27 research outputs found

    PqqD is a novel peptide chaperone that forms a ternary complex with the radical S-adenosylmethionine protein PqqE in the pyrroloquinoline quinone biosynthetic pathway

    Get PDF
    Pyrroloquinoline quinone (PQQ) is a product of a ribosomally synthesized and post-translationally modified pathway consisting of five conserved genes, pqqA-E. PqqE is a radical S-adenosylmethionine (RS) protein with a C-terminal SPASM domain, and is proposed to catalyze the formation of a carbon-carbon bond between the glutamate and tyrosine side chains of the peptide substrate PqqA. PqqD is a 10-kDa protein with an unknown function, but is essential for PQQ production. Recently, in Klebsiella pneumoniae (Kp), PqqD and PqqE were shown to interact; however, the stoichiometry and KD were not obtained. Here, we show that the PqqE and PqqD interaction transcends species, also occurring in Methylobacterium extorquens AM1 (Me). The stoichiometry of the MePqqD and MePqqE interaction is 1:1 and the KD, determined by surface plasmon resonance spectroscopy (SPR), was found to be ∼12 μm. Moreover, using SPR and isothermal calorimetry techniques, we establish for the first time that MePqqD binds MePqqA tightly (KD ∼200 nm). The formation of a ternary MePqqA-D-E complex was captured by native mass spectrometry and the KD for the MePqqAD-MePqqE interaction was found to be ∼5 μm. Finally, using a bioinformatic analysis, we found that PqqD orthologues are associated with the RS-SPASM family of proteins (subtilosin, pyrroloquinoline quinone, anaerobic sulfatase maturating enzyme, and mycofactocin), all of which modify either peptides or proteins. In conclusion, we propose that PqqD is a novel peptide chaperone and that PqqD orthologues may play a similar role in peptide modification pathways that use an RS-SPASM protein

    Journal File

    No full text

    Risk Factors for Visual Field Progression in Treated Glaucoma

    No full text
    Objective: To determine intraocular pressure (IOP)-dependent and IOP-independent variables associated with visual field (VF) progression in treated glaucoma. Design: Retrospective cohort of the Glaucoma Progression Study. Methods: Consecutive, treated glaucoma patients with repeatable VF loss who had 8 or more VF examinations of either eye, using the Swedish Interactive Threshold Algorithm (24-2 SITA-Standard, Humphrey Field Analyzer II; Carl Zeiss Meditec, Inc, Dublin, California), during the period between January 1999 and September 2009 were included. Visual field progression was evaluated using automated pointwise linear regression. Evaluated data included age, sex, race, central corneal thickness, baseline VF mean deviation, mean follow-up IOP, peak IOP, IOP fluctuation, a detected disc hemorrhage, and presence of beta-zone parapapillary atrophy. Results: We selected 587 eyes of 587 patients (mean [SD] age, 64.9 [13.0] years). The mean (SD) number of VFs was 11.1 (3.0), spanning a mean (SD) of 6.4 (1.7) years. In the univariable model, older age (odds ratio [OR], 1.19 per decade; P = .01), baseline diagnosis of exfoliation syndrome (OR, 1.79; P = .01), decreased central corneal thickness (OR, 1.38 per 40 mu m thinner; P < .01), a detected disc hemorrhage (OR, 2.31; P < .01), presence of beta-zone parapapillary atrophy (OR, 2.17; P < .01), and all IOP parameters (mean follow-up, peak, and fluctuation; P < .01) were associated with increased risk of VF progression. In the multivariable model, peak IOP (OR, 1.13; P < .01), thinner central corneal thickness (OR, 1.45 per 40 mu m thinner; P < .01), a detected disc hemorrhage (OR, 2.59; P < .01), and presence of beta-zone parapapillary atrophy (OR, 2.38; P < .01) were associated with VF progression. Conclusions: IOP-dependent and IOP-independent risk factors affect disease progression in treated glaucoma. Peak IOP is a better predictor of progression than is IOP mean or fluctuation.New York Glaucoma Research Institute, New YorkLenox Hill Hospital, New Yor

    PqqD Is a Novel Peptide Chaperone That Forms a Ternary Complex with the Radical S-Adenosylmethionine Protein PqqE in the Pyrroloquinoline Quinone Biosynthetic Pathway

    Get PDF
    Pyrroloquinoline quinone (PQQ) is a product of a ribosomally synthesized and post-translationally modified pathway consisting of five conserved genes, pqqA-E. PqqE is a radical S-adenosylmethionine (RS) protein with a C-terminal SPASM domain, and is proposed to catalyze the formation of a carbon-carbon bond between the glutamate and tyrosine side chains of the peptide substrate PqqA. PqqD is a 10-kDa protein with an unknown function, but is essential for PQQ production. Recently, in Klebsiella pneumoniae (Kp), PqqD and PqqE were shown to interact; however, the stoichiometry and K(D) were not obtained. Here, we show that the PqqE and PqqD interaction transcends species, also occurring in Methylobacterium extorquens AM1 (Me). The stoichiometry of the MePqqD and MePqqE interaction is 1:1 and the K(D), determined by surface plasmon resonance spectroscopy (SPR), was found to be ∼12 μm. Moreover, using SPR and isothermal calorimetry techniques, we establish for the first time that MePqqD binds MePqqA tightly (K(D) ∼200 nm). The formation of a ternary MePqqA-D-E complex was captured by native mass spectrometry and the K(D) for the MePqqAD-MePqqE interaction was found to be ∼5 μm. Finally, using a bioinformatic analysis, we found that PqqD orthologues are associated with the RS-SPASM family of proteins (subtilosin, pyrroloquinoline quinone, anaerobic sulfatase maturating enzyme, and mycofactocin), all of which modify either peptides or proteins. In conclusion, we propose that PqqD is a novel peptide chaperone and that PqqD orthologues may play a similar role in peptide modification pathways that use an RS-SPASM protein
    corecore