436 research outputs found

    Epidemiology of low pathogenic avian influenza viruses in wild birds

    Get PDF
    Summary Although extensive data are available on low pathogenic avian influenza (LPAI) virus surveillance in wild birds in North America and Europe, data are scarce for other parts of the world, and our understanding of LPAI virus ecology in the natural reservoir is still far from complete. The outbreak of highly pathogenic avian influenza (HPAI) of the H5N1 subtype in the eastern hemisphere has put an increased focus on the role of wild birds in influenza virus transmission. Here, the authors review the current knowledge of the (molecular) epidemiology, genetics and evolution of LPAI viruses in wild birds, and identify some important gaps in current knowledge

    Disinfection of Ebola Virus in Sterilized Municipal Wastewater

    Get PDF
    Concerns have been raised regarding handling of Ebola virus contaminated wastewater, as well as the adequacy of proposed disinfection approaches. In the current study, we investigate the inactivation of Ebola virus in sterilized domestic wastewater utilizing sodium hypochlorite addition and pH adjustment. No viral inactivation was observed in the one-hour tests without sodium hypochlorite addition or pH adjustment. No virus was recovered after 20 seconds (i.e. 4.2 log10 unit inactivation to detection limit) following the addition of 5 and 10 mg L-1 sodium hypochlorite, which resulted in immediate free chlorine residuals of 0.52 and 1.11 mg L-1, respectively. The addition of 1 mg L-1 sodium hypochlorite resulted in an immediate free chlorine residual of 0.16 mg L-1, which inactivated 3.5 log10 units of Ebola virus in 20 seconds. Further inactivation was not evident due to the rapid consumption of the chlorine residual. Elevating the pH to 11.2 was found to significantly increase viral decay over ambient conditions. These results indicate the high susceptibility of the enveloped Ebola virus to disinfection in the presence of free chlorine in municipal wastewater; however, we caution that extension to more complex matrices (e.g. bodily fluids) will require additional verification

    Sampling strategies and biodiversity of influenza A subtypes in wild birds

    Full text link
    Wild aquatic birds are recognized as the natural reservoir of avian influenza A viruses (AIV), but across high and low pathogenic AIV strains, scientists have yet to rigorously identify most competent hosts for the various subtypes. We examined 11,870 GenBank records to provide a baseline inventory and insight into patterns of global AIV subtype diversity and richness. Further, we conducted an extensive literature review and communicated directly with scientists to accumulate data from 50 non-overlapping studies and over 250,000 birds to assess the status of historic sampling effort. We then built virus subtype sample-based accumulation curves to better estimate sample size targets that capture a specific percentage of virus subtype richness at seven sampling locations. Our study identifies a sampling methodology that will detect an estimated 75% of circulating virus subtypes from a targeted bird population and outlines future surveillance and research priorities that are needed to explore the influence of host and virus biodiversity on emergence and transmission

    Thermodynamics of adiabatic feedback control

    Full text link
    We study adaptive control of classical ergodic Hamiltonian systems, where the controlling parameter varies slowly in time and is influenced by system's state (feedback). An effective adiabatic description is obtained for slow variables of the system. A general limit on the feedback induced negative entropy production is uncovered. It relates the quickest negentropy production to fluctuations of the control Hamiltonian. The method deals efficiently with the entropy-information trade off.Comment: 6 pages, 1 figur

    Relating the thermodynamic arrow of time to the causal arrow

    Full text link
    Consider a Hamiltonian system that consists of a slow subsystem S and a fast subsystem F. The autonomous dynamics of S is driven by an effective Hamiltonian, but its thermodynamics is unexpected. We show that a well-defined thermodynamic arrow of time (second law) emerges for S whenever there is a well-defined causal arrow from S to F and the back-action is negligible. This is because the back-action of F on S is described by a non-globally Hamiltonian Born-Oppenheimer term that violates the Liouville theorem, and makes the second law inapplicable to S. If S and F are mixing, under the causal arrow condition they are described by microcanonic distributions P(S) and P(S|F). Their structure supports a causal inference principle proposed recently in machine learning.Comment: 10 page

    Electroweak Bubble Nucleation, Nonperturbatively

    Get PDF
    We present a lattice method to compute bubble nucleation rates at radiatively induced first order phase transitions, in high temperature, weakly coupled field theories, nonperturbatively. A generalization of Langer's approach, it makes no recourse to saddle point expansions and includes completely the dynamical prefactor. We test the technique by applying it to the electroweak phase transition in the minimal standard model, at an unphysically small Higgs mass which gives a reasonably strong phase transition (lambda/g^2 =0.036, which corresponds to m(Higgs)/m(W) = 0.54 at tree level but does not correspond to a positive physical Higgs mass when radiative effects of the top quark are included), and compare the results to older perturbative and other estimates. While two loop perturbation theory slightly under-estimates the strength of the transition measured by the latent heat, it over-estimates the amount of supercooling by a factor of 2.Comment: 48 pages, including 16 figures. Minor revisions and typo fixes, nothing substantial, conclusions essentially unchange

    Bisphenol A exposure in Mexico City and risk of prematurity: a pilot nested case control study

    Get PDF
    Abstract Background Presence of Bisphenol A (BPA) has been documented worldwide in a variety of human biological samples. There is growing evidence that low level BPA exposure may impact placental tissue development and thyroid function in humans. The aim of this present pilot study was to determine urinary concentrations of BPA during the last trimester of pregnancy among a small subset of women in Mexico City, Mexico and relate these concentrations to risk of delivering prematurely. Methods A nested case-control subset of 60 participants in the Early Life Exposure in Mexico to ENvironmental Toxicants (ELEMENT) study in Mexico City, Mexico were selected based on delivering less than or equal to 37 weeks of gestation and greater than 37 weeks of gestation. Third trimester archived spot urine samples were analyzed by online solid phase extraction coupled with high performance liquid chromatography isotope dilution tandem mass spectrometry. Results BPA was detected in 80.0% (N = 48) of the urine samples; total concentrations ranged from < 0.4 μg/L to 6.7 μg/L; uncorrected geometric mean was 1.52 μg/L. The adjusted odds ratio of delivering less than or equal to 37 weeks in relation to specific gravity adjusted third trimester BPA concentration was 1.91 (95%CI 0.93, 3.91, p-value = 0.08). When cases were further restricted to births occurring prior to the 37th week (n = 12), the odds ratio for specific-gravity adjusted BPA was larger and statistically significant (p < 0.05). Conclusions This is the first study to document measurable levels of BPA in the urine of a population of Mexican women. This study also provides preliminary evidence, based on a single spot urine sample collected during the third trimester, that pregnant women who delivered less than or equal to 37 weeks of gestation and prematurely (< 37 weeks) had higher urinary concentrations of BPA compared to women delivering after 37 weeks.http://deepblue.lib.umich.edu/bitstream/2027.42/78251/1/1476-069X-9-62.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78251/2/1476-069X-9-62.pdfPeer Reviewe

    Vacuum decay in quantum field theory

    Get PDF
    We study the contribution to vacuum decay in field theory due to the interaction between the long and short-wavelength modes of the field. The field model considered consists of a scalar field of mass MM with a cubic term in the potential. The dynamics of the long-wavelength modes becomes diffusive in this interaction. The diffusive behaviour is described by the reduced Wigner function that characterizes the state of the long-wavelength modes. This function is obtained from the whole Wigner function by integration of the degrees of freedom of the short-wavelength modes. The dynamical equation for the reduced Wigner function becomes a kind of Fokker-Planck equation which is solved with suitable boundary conditions enforcing an initial metastable vacuum state trapped in the potential well. As a result a finite activation rate is found, even at zero temperature, for the formation of true vacuum bubbles of size M1M^{-1}. This effect makes a substantial contribution to the total decay rate.Comment: 27 pages, RevTeX, 1 figure (uses epsf.sty
    corecore