400 research outputs found

    Deformation of a flexible fiber in a viscous flow past an obstacle

    Get PDF
    We study the deformation and transport of elastic fibers in a viscous Hele-Shaw flow with curved streamlines. The variations of the global velocity and orientation of the fiber follow closely those of the local flow velocity. The ratios of the curvatures of the fibers by the corresponding curvatures of the streamlines reflect a balance between elastic and viscous forces: this ratio is shown experimentally to be determined by a dimensionless {\it Sperm number} SpSp combining the characteristic parameters of the flow (transverse velocity gradient, viscosity, fiber diameter/cell gap ratio) and those of the fiber (diameter, effective length, Young's modulus). For short fibers, the effective length is that of the fiber; for long ones, it is equal to the transverse characteristic length of the flow. For S_p250S\_p \lesssim 250, the ratio of the curvatures increases linearly with SpSp; For S_p250S\_p \gtrsim 250, the fiber reaches the same curvature as the streamlines

    Experimental and numerical investigations of flow structure and momentum transport in a turbulent buoyancy-driven flow inside a tilted tube.

    Get PDF
    Buoyancy-driven turbulent mixing of fluids of slightly different densities [At = Δρ/(2〈ρ〉) = 1.15×10−2] in a long circular tube tilted at an angle θ = 15° from the vertical is studied at the local scale, both experimentally from particle image velocimetry and laser induced fluorescence measurements in the vertical diametrical plane and numerically throughout the tube using direct numerical simulation. In a given cross section of the tube, the axial mean velocity and the mean concentration both vary linearly with the crosswise distance z from the tube axis in the central 70% of the diameter. A small crosswise velocity component is detected in the measurement plane and is found to result from a four-cell mean secondary flow associated with a nonzero streamwise component of the vorticity. In the central region of the tube cross section, the intensities of the three turbulent velocity fluctuations are found to be strongly different, that of the streamwise fluctuation being more than twice larger than that of the spanwise fluctuation which itself is about 50% larger than that of the crosswise fluctuation. This marked anisotropy indicates that the turbulent structure is close to that observed in homogeneous turbulent shear flows. Still in the central region, the turbulent shear stress dominates over the viscous stress and reaches a maximum on the tube axis. Its crosswise variation is approximately accounted for by a mixing length whose value is about one-tenth of the tube diameter. The momentum exchange in the core of the cross section takes place between its lower and higher density parts and there is no net momentum exchange between the core and the near-wall regions. A sizable part of this transfer is due both to the mean secondary flow and to the spanwise turbulent shear stress. Near-wall regions located beyond the location of the extrema of the axial velocity (|z|≳0.36 d) are dominated by viscous stresses which transfer momentum toward (from) the wall near the top (bottom) of the tube

    Failure mechanisms and surface roughness statistics of fractured Fontainebleau sandstone

    Full text link
    In an effort to investigate the link between failure mechanisms and the geometry of fractures of compacted grains materials, a detailed statistical analysis of the surfaces of fractured Fontainebleau sandstones has been achieved. The roughness of samples of different widths W is shown to be self affine with an exponent zeta=0.46 +- 0.05 over a range of length scales ranging from the grain size d up to an upper cut-off length \xi = 0.15 W. This low zeta value is in agreement with measurements on other sandstones and on sintered materials. The probability distributions P(delta z,delta h) of the variations of height over different distances delta z > d can be collapsed onto a single Gaussian distribution with a suitable normalisation and do not display multifractal features. The roughness amplitude, as characterized by the height-height correlation over fixed distances delta z, does not depend on the sample width, implying that no anomalous scaling of the type reported for other materials is present. It is suggested, in agreement with recent theoretical work, to explain these results by the occurence of brittle fracture (instead of damage failure in materials displaying a higher value of zeta = 0.8).Comment: 7 page

    Influence of the disorder on tracer dispersion in a flow channel

    Get PDF
    Tracer dispersion is studied experimentally in periodic or disordered arrays of beads in a capillary tube. Dispersion is measured from light absorption variations near the outlet following a steplike injection of dye at the inlet. Visualizations using dye and pure glycerol are also performed in similar geometries. Taylor dispersion is dominant both in an empty tube and for a periodic array of beads: the dispersivity l_dl\_d increases with the P\'eclet number PePe respectively as PePe and Pe0.82Pe^{0.82} and is larger by a factor of 8 in the second case. In a disordered packing of smaller beads (1/3 of the tube diameter) geometrical dispersion associated to the disorder of the flow field is dominant with a constant value of l_dl\_d reached at high P\'eclet numbers. The minimum dispersivity is slightly higher than in homogeneous nonconsolidated packings of small grains, likely due heterogeneities resulting from wall effects. In a disordered packing with the same beads as in the periodic configuration, l_dl\_d is up to 20 times lower than in the latter and varies as PeαPe^\alpha with α=0.5\alpha = 0.5 or =0.69= 0.69 (depending on the fluid viscosity). A simple model accounting for this latter result is suggested.Comment: available online at http://www.edpsciences.org/journal/index.cfm?edpsname=epjap&niv1=contents&niv2=archive

    Measuring fast electron spectra and laser absorption in relativistic laser-solid interactions using differential bremsstrahlung photon detectors

    Full text link
    A photon detector suitable for the measurement of bremsstrahlung spectra generated in relativistically-intense laser-solid interactions is described. The Monte Carlo techniques used to back-out the fast electron spectrum and laser energy absorbed into fast electrons are detailed. A relativistically-intense laser-solid experiment using frequency doubled laser light is used to demonstrate the effective operation of the detector. The experimental data was interpreted using the 3-spatial-dimension Monte Carlo code MCNPX (Pelowitz 2008), and the fast electron temperature found to be 125 keV

    First case of yellow fever in French Guiana since 1902.

    Get PDF
    The first case of yellow fever in French Guiana since 1902 was reported in March 1998. The yellow fever virus genome was detected in postmortem liver biopsies by seminested polymerase chain reaction. Sequence analysis showed that this strain was most closely related to strains from Brazil and Ecuador

    Final analysis of the phase III non-inferiority COLUMBA study of subcutaneous versus intravenous daratumumab in patients with relapsed or refractory multiple myeloma

    Get PDF
    In the primary analysis of the phase III COLUMBA study, daratumumab by subcutaneous administration (DARA SC) demonstrated non-inferiority to intravenous administration (DARA IV) for relapsed or refractory multiple myeloma (RRMM). Here, we report the final analysis of efficacy and safety from COLUMBA after a median of 29.3 months follow-up (additional 21.8 months after the primary analysis). In total, 522 patients were randomized (DARA SC, n=263; DARA IV, n=259). With longer follow-up, DARA SC and DARA IV continued to show consistent efficacy and maximum trough daratumumab concentration as compared with the primary analysis. The overall response rate was 43.7% for DARA SC and 39.8% for DARA IV. The maximum mean (standard deviation [SD]) trough concentration (cycle 3, day 1 pre-dose) of serum DARA was 581 (SD, 315) µg/mL for DARA SC and 496 (SD, 231) µg/mL for DARA IV. Median progression-free survival was 5.6 months for DARA SC and 6.1 months for DARA IV; median overall survival was 28.2 months and 25.6 months, respectively. Grade 3/4 treatment-emergent adverse events occurred in 50.8% of patients in the DARA SC group and 52.7% in the DARA IV group; the most common (≥10%) were thrombocytopenia (DARA SC, 14.2%; DARA IV, 13.6%), anemia (13.8%; 15.1%), and neutropenia (13.1%; 7.8%). The safety profile remained consistent with the primary analysis after longer follow-up. In summary, DARA SC and DARA IV continue to demonstrate similar efficacy and safety, with a low rate of infusion-related reactions (12.7% vs. 34.5%, respectively) and shorter administration time (3-5 minutes vs. 3-7 hours) supporting DARA SC as a preferable therapeutic choice
    corecore