30,126 research outputs found

    Numerical analysis of shells. Volume 3 - Engineer's program manual for ''STARS-2'' - Shell Theory Automated for Rotational Structures-2, digital computer program

    Get PDF
    Manual of engineering programming information for Shell Theory Automated for Rotational Structures /STARS 2/ - Vol.

    Multiphoton Processes in Driven Mesoscopic Systems

    Full text link
    We study the statistics of multi-photon absorption/emission processes in a mesoscopic ring threaded by an harmonic time-dependent flux Ί(t)\Phi(t). For this sake, we demonstrate a useful analogy between the Keldysh quantum kinetic equation for the electrons distribution function and a Continuous Time Random Walk in energy space with corrections due to interference effects. Studying the probability to absorb/emit nn quanta ℏω\hbar\omega per scattering event, we explore the crossover between ultra-quantum/low-intensity limit and quasi-classical/high-intensity regime, and the role of multiphoton processes in driving it.Comment: 6 pages, 5 figures, extended versio

    The limits of spatial resolution achievable using a 30kHz multibeam sonar: model predictions and field results

    Get PDF
    A Simrad EM300 multibeam sonar was used to attempt to resolve small (-5m high) targets in 450m of water. The targets had previously been surveyed using a deeply towed 59 kHz sidescan sonar. Using multisector active yaw, pitch and roll compensation, together with dynamically altering angular sectors, the sonar is capable of maintaining sounding densities of as tight as 10m spacing in these water depths. This is significantly smaller than the largest dimension of the projected beam footprints (1 6-64m). The observed data suggest that the targets are intermittently resolved. The field results compare well to the output of a numerical model which reproduces the imaging geometry. Possible variations in the imaging geometry are implemented in the model, comparing equiangular and equidistant beam spacings, differing angular sectors and all the different combinations of transmit and receive beam widths that are available for this model of sonar. While amplitude detection is significantly aliased by targets smaller than the across track beam footprint, under conditions where the signal to noise ratio is favorable, phase detection can be used to reduce the minimum size of target observed to about the scale of the across track beam width. Thus having the beam spacing at the scale is justifiable. The phase distortion due to smaller targets, however, is generally averaged out

    Cryptic MHC Polymorphism Revealed but Not Explained by Selection on the Class IIB Peptide-Binding Region

    Get PDF
    The immune genes of the major histocompatibility complex (MHC) are characterized by extraordinarily high levels of nucleotide and haplotype diversity. This variation is maintained by pathogen-mediated balancing selection that is operating on the peptide-binding region (PBR). Several recent studies have found, however, that some populations possess large clusters of alleles that are translated into virtually identical proteins. Here, we address the question of how this nucleotide polymorphism is maintained with little or no functional variation for selection to operate on. We investigate circa 750–850 bp of MHC class II DAB genes in four wild populations of the guppy Poecilia reticulata. By sequencing an extended region, we uncovered 40.9% more sequences (alleles), which would have been missed if we had amplified the exon 2 alone. We found evidence of several gene conversion events that may have homogenized sequence variation. This reduces the visible copy number variation (CNV) and can result in a systematic underestimation of the CNV in studies of the MHC and perhaps other multigene families. We then focus on a single cluster, which comprises 27 (of a total of 66) sequences. These sequences are virtually identical and show no signal of selection. We use microsatellites to reconstruct the populations' demography and employ simulations to examine whether so many similar nucleotide sequences can be maintained in the populations. Simulations show that this variation does not behave neutrally. We propose that selection operates outside the PBR, for example, on linked immune genes or on the “sheltered load” that is thought to be associated to the MHC. Future studies on the MHC would benefit from extending the amplicon size to include polymorphisms outside the exon with the PBR. This may capture otherwise cryptic haplotype variation and CNV, and it may help detect other regions in the MHC that are under selection

    New Goldstone multiplet for partially broken supersymmetry

    Full text link
    The partial spontaneous breaking of rigid N=2 supersymmetry implies the existence of a massless N=1 Goldstone multiplet. In this paper we show that the spin-(1/2,1) Maxwell multiplet can play this role. We construct its full nonlinear transformation law and find the invariant Goldstone action. The spin-1 piece of the action turns out to be of Born-Infeld type, and the full superfield action is duality invariant. This leads us to conclude that the Goldstone multiplet can be associated with a D-brane solution of superstring theory for p=3. In addition, we find that N=1 chirality is preserved in the presence of the Goldstone-Maxwell multiplet. This allows us to couple it to N=1 chiral and gauge field multiplets. We find that arbitrary Kahler and superpotentials are consistent with partially broken N=2 supersymmetry.Comment: Latex, 13 pages. Version to appear in Phys. Rev.

    Reducing Medical Errors for Patients with Substance Use Disorders with a Medical Information Card

    Get PDF
    Background Approximately 98,000 Americans perish annually due to medical errors and adverse events associated with the limited access to or incomplete pertinent patient health information (Centers for Disease Control and Prevention [CDC], 2022; Obrien et al., 2021). Pertinent patient health information includes patients’ allergies, current medications, current medical diagnosis, blood type, insurance, and emergency contact. The purpose of this project was to examine the efficacy in using File of Life cards in reducing medical errors among patients with substance use disorders (SUDs), and the perception of patients and healthcare providers ease of use, satisfaction of using the File of Life cards, and improving medical decision making and preventing errors. Method A two-month quality improvement project was conducted at a clinic in the Northern Midwest. Patients were individually educated about and received a File of Life card during their Medication Assistance Treatment (MAT) appointments. Questionnaires were distributed to patients and the healthcare staff. Patients’ electronic health records (EHRs) were analyzed to determine the number of times they visited the local ED and the number of reported medical inconsistencies or errors during this QI project’s implementation. Results Among patients, 16% used their cards and 100% perceived the cards easy to use and useful with their care. Two patients visited the local ED and no medical errors were reported. Among healthcare providers, 100% perceived the cards easy to use, 87% considered the cards useful with medical decision making, 93% considered the cards useful in preventing medical errors, and 0% encountered any of the patients that received the cards. Conclusion File of Life cards may improve medical decision making and decrease medical errors. They may help improve patients’ overall satisfaction and confidence with their healthcare. However, no statistical analysis was conducted due to no pre-qualitative data, short duration, and small sample size. Therefore, a larger sample size, and longer duration of time is needed to confirm these findings

    Geometric and Radiometric Correction of Multibeam Backscatter Derived from Reson 8101 Systems

    Get PDF
    A common by-product of multibeam surveys is a measure of the backscattered acoustic intensity from the seafloor. These data are of immense interest to geologists and geoscientists since maps of the acoustic backscatter strength can be used to infer physical properties of the sea bottom, such as impedance, roughness and volume inhomogeneity. Before such maps can be created from multibeam acoustic backscatter data, however, two tasks must be performed. 1. The data must be geographically registered using the bathymetric profile collected by the multibeam (which accounts for full orientation and refraction), as opposed to using the traditional flat-seafloor assumption. This allows us to additionally calculate the true grazing angle. 2. The signal intensities must be reduced to as close a measure of the backscatter strength of the seafloor as possible by radiometrically correcting the data on a ping-by-ping basis for variables such as transmission power, beam pattern, receiver gain, and pulse length. The purpose of this research project is to develop software tools to perform the above corrections for a massive backlog of RESON SeaBat 8101 multibeam data, as collected by the NOAA ship Rainier. While the backscatter logged by the multibeam systems is not of prime importance to NOAA’s hydrographic charting mandate, they recognize the potential value of this data to the work of other sister agencies such as the U.S. Geological Survey (who is funding this project). The particular problems encountered with these data are that. Up to the end of 2001 field season, the backscatter data acquired by this system were collected from dedicated receiver beams, separate from those used for bathymetry. This receive beam is broad in the elevation plane (similar to a sidescan sonar) so that the variation in elevation angle with time must be indirectly inferred from the corresponding bathymetric profile. As some backscatter data are collected from slant-ranges beyond which bathymetric data are acquired, for that case the imaging geometry must be either inferred using a simple slope model, or derived from neighbouring swaths. Results of the application of full geometric and radiometric corrections will be presented

    Cold adaptation and replicable microbial community development during long-term low temperature anaerobic digestion treatment of synthetic sewage

    Get PDF
    The development and, activity of a cold-adapting microbial community was monitored during low temperature anaerobic digestion (LtAD) treatment of wastewater. Two replicate hybrid anaerobic sludge bed-fixed-film reactors treated a synthetic sewage wastewater at 12°C, at organic loading rates of 0.25–1.0 kg Chemical Oxygen Demand (COD) m−3 d−1, over 889 days. The inoculum was obtained from a full-scale AD reactor, which was operated at 37˚C. Both LtAD reactors readily degraded the influent with COD removal efficiencies regularly exceeding 78% for both the total and soluble COD fractions. The biomass from both reactors was sampled temporally and tested for activity against hydrolytic and methanogenic substrates at 12˚C and 37˚C. Data indicated that significantly enhanced low-temperature hydrolytic and methanogenic activity developed in both systems. For example, the hydrolysis rate constant (K) at 12°C had increased 20–30-fold by comparison to the inoculum by day 500. Substrate affinity also increased for hydrolytic substrates at low temperature. Next generation sequencing demonstrated that a shift in community structure occurred over the trial, involving a 1-log-fold change in 25 SEQS (OTU-free approach) from the inoculum. Microbial community structure changes and process performance were replicable in the LtAD reactors
    • 

    corecore