2,258 research outputs found

    Imaging the symmetry breaking of molecular orbitals in carbon nanotubes

    Get PDF
    Carbon nanotubes have attracted considerable interest for their unique electronic properties. They are fascinating candidates for fundamental studies of one dimensional materials as well as for future molecular electronics applications. The molecular orbitals of nanotubes are of particular importance as they govern the transport properties and the chemical reactivity of the system. Here we show for the first time a complete experimental investigation of molecular orbitals of single wall carbon nanotubes using atomically resolved scanning tunneling spectroscopy. Local conductance measurements show spectacular carbon-carbon bond asymmetry at the Van Hove singularities for both semiconducting and metallic tubes, demonstrating the symmetry breaking of molecular orbitals in nanotubes. Whatever the tube, only two types of complementary orbitals are alternatively observed. An analytical tight-binding model describing the interference patterns of ? orbitals confirmed by ab initio calculations, perfectly reproduces the experimental results

    Database Engineering Processes with DB-MAIN

    Get PDF
    Software engineering needs more and more to be supported by CASE tools. Since databases are at the heart of information systems, they deserve a particular attention. More and more CASE tools allow method engineers to implement their own methodology and they allow users to record all their actions, with their rationales, in order to improve the quality of the design and the quality of the documentation of the design. DBMAIN is such a database oriented tool with a method description and a documentation generation facilities. But it has its particularities like its procedural non-deterministic Method Description Language, its well integrated multilevel histories and its userfriendly methodological engine

    Stable manifolds and homoclinic points near resonances in the restricted three-body problem

    Full text link
    The restricted three-body problem describes the motion of a massless particle under the influence of two primaries of masses 1−μ1-\mu and μ\mu that circle each other with period equal to 2π2\pi. For small μ\mu, a resonant periodic motion of the massless particle in the rotating frame can be described by relatively prime integers pp and qq, if its period around the heavier primary is approximately 2πp/q2\pi p/q, and by its approximate eccentricity ee. We give a method for the formal development of the stable and unstable manifolds associated with these resonant motions. We prove the validity of this formal development and the existence of homoclinic points in the resonant region. In the study of the Kirkwood gaps in the asteroid belt, the separatrices of the averaged equations of the restricted three-body problem are commonly used to derive analytical approximations to the boundaries of the resonances. We use the unaveraged equations to find values of asteroid eccentricity below which these approximations will not hold for the Kirkwood gaps with q/pq/p equal to 2/1, 7/3, 5/2, 3/1, and 4/1. Another application is to the existence of asymmetric librations in the exterior resonances. We give values of asteroid eccentricity below which asymmetric librations will not exist for the 1/7, 1/6, 1/5, 1/4, 1/3, and 1/2 resonances for any μ\mu however small. But if the eccentricity exceeds these thresholds, asymmetric librations will exist for μ\mu small enough in the unaveraged restricted three-body problem

    Interaction between concentric Tubes in DWCNTs

    Full text link
    A detailed investigation of the Raman response of the inner tube radial breathing modes (RBMs) in double-wall carbon nanotubes is reported. It revealed that the number of observed RBMs is two to three times larger than the number of possible tubes in the studied frequency range. This unexpected increase in Raman lines is attributed to a splitting of the inner tube response. It is shown to originate from the possibility that one type of inner tube may form in different types of outer tubes and the fact that the inner tube RBM frequency depends on the diameter of the enclosing tube. Finally, a comparison of the inner tube RBMs and the RBMs of tubes in bundles gave clear evidence that the interaction in a bundle is stronger than the interaction between inner and outer tubes.Comment: 6 pages, 7 figures, submitted to Eur. Phys. J.

    Multiple plasmon resonances in naturally-occurring multiwall nanotubes: infrared spectra of chrysotile asbestos

    Full text link
    Chrysotile asbestos is formed by densely packed bundles of multiwall hollow nanotubes. Each wall in the nanotubes is a cylindrically wrapped layer of Mg3Si2O5(OH)4Mg_3 Si_2 O_5 (OH)_4. We show by experiment and theory that the infrared spectrum of chrysotile presents multiple plasmon resonances in the Si-O stretching bands. These collective charge excitations are universal features of the nanotubes that are obtained by cylindrically wrapping an anisotropic material. The multiple plasmons can be observed if the width of the resonances is sufficiently small as in chrysotile.Comment: 4 pages, 5 figures. Revtex4 compuscript. Misprint in Eq.(6) correcte

    On the diffraction pattern of C60 peapods

    Full text link
    We present detailed calculations of the diffraction pattern of a powder of bundles of C60_{60} peapods. The influence of all pertinent structural parameters of the bundles on the diffraction diagram is discussed, which should lead to a better interpretation of X-ray and neutron diffraction diagrams. We illustrate our formalism for X-ray scattering experiments performed on peapod samples synthesized from 2 different technics, which present different structural parameters. We propose and test different criteria to solve the difficult problem of the filling rate determination.Comment: Sumitted 19 May 200

    Evolutionary Dynamics While Trapped in Resonance: A Keplerian Binary System Perturbed by Gravitational Radiation

    Get PDF
    The method of averaging is used to investigate the phenomenon of capture into resonance for a model that describes a Keplerian binary system influenced by radiation damping and external normally incident periodic gravitational radiation. The dynamical evolution of the binary orbit while trapped in resonance is elucidated using the second order partially averaged system. This method provides a theoretical framework that can be used to explain the main evolutionary dynamics of a physical system that has been trapped in resonance.Comment: REVTEX Style, Submitte

    van der Waals interaction in nanotube bundles : consequences on vibrational modes

    Full text link
    We have developed a pair-potential approach for the evaluation of van der Waals interaction between carbon nanotubes in bundles. Starting from a continuum model, we show that the intertube modes range from 5cm−15 cm^{-1} to 60cm−160 cm^{-1}. Using a non-orthogonal tight-binding approximation for describing the covalent intra-tube bonding in addition, we confirme a slight chiral dependance of the breathing mode frequency and we found that this breathing mode frequency increase by ∼\sim 10 % if the nanotube lie inside a bundle as compared to the isolated tube.Comment: 5 pages, 2 figure
    • …
    corecore