
Association for Information Systems
AIS Electronic Library (AISeL)

ECIS 2000 Proceedings European Conference on Information Systems
(ECIS)

2000

Database Engineering Processes with DB-MAIN
D. Roland
University of Namur, dro@info.fundp.ac.be

J. L. Hainaut
University of Namur, jlh@info.fundp.ac.be

J. M. Hick
University of Namur, jmh@info.fundp.ac.be

J. Henrard
University of Namur, jhe@info.fundp.ac.be

V. Englebert
University of Namur, ven@info.fundp.ac.be

Follow this and additional works at: http://aisel.aisnet.org/ecis2000

This material is brought to you by the European Conference on Information Systems (ECIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in ECIS 2000 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Roland, D.; Hainaut, J. L.; Hick, J. M.; Henrard, J.; and Englebert, V., "Database Engineering Processes with DB-MAIN" (2000). ECIS
2000 Proceedings. 68.
http://aisel.aisnet.org/ecis2000/68

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301348327?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fecis2000%2F68&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2000?utm_source=aisel.aisnet.org%2Fecis2000%2F68&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis?utm_source=aisel.aisnet.org%2Fecis2000%2F68&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis?utm_source=aisel.aisnet.org%2Fecis2000%2F68&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2000?utm_source=aisel.aisnet.org%2Fecis2000%2F68&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2000/68?utm_source=aisel.aisnet.org%2Fecis2000%2F68&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Abstract - Software engineering needs more and more to be
supported by CASE tools. Since databases are at the heart of in-
formation systems, they deserve a particular attention. More and
more CASE tools allow method engineers to implement their own
methodology and they allow users to record all their actions,
with their rationales, in order to improve the quality of the de-
sign and the quality of the documentation of the design. DB-
MAIN is such a database oriented tool with a method description
and a documentation generation facilities. But it has its particu-
larities like its procedural non-deterministic Method Description
Language, its well integrated multilevel histories and its user-
friendly methodological engine.

I. INTRODUCTION

The need for controlling software processes has long been
recognised as a strong requirement for improving the quality
of software development and maintenance, just to mention
two of the most critical problems. Database engineering is an
important domain of information system engineering that de-
serves a particular attention since a database is at the heart of
every information system. Controlling software processes
consists in analysing the engineering activities that have been
carried out to infer useful information on the products, the
processes and the actors. Clearly, this control must be based
on some trace of the engineering activity. The trace, or (bet-
ter) the history of a software process consists of the recording
of all the activities, all the decisions taken and all the ration-
ales that occur during this process. To be useful a CASE tool
has to guide a database engineer all along the process while
recording the history during all phases; and it has to do it the
most user-friendly and helpfully possible.

A. Process modelling

Database engineering processes can be modelled at a very
fine grain. Though database design methods have been fairly
standardised, developers like to follow their own way of
working when they are faced with non-standard problems.
This is the case for reverse engineering, but every database
engineering activity can, sooner or later, require a high degree
of flexibility in the way problems are solved. Though, devel-
opers still require methodological guidance, but according to
their own methodology. Hence the need for powerful but
flexible process models and for tools that are able to enact
them. That is why we proposed in [24] an executable model-
ling language (MDL) which is both procedural and non deter-
ministic for describing database engineering methods. When
using an MDL method, the supporting CASE tool will explain
the analyst what to do or how to do it. The CASE tool will
possibly perform well defined processes that can be auto-

mated, or present to the analyst the list of processes that can
or have to be performed and let him do the job in a semi-con-
trolled way.

B. Building a documentation

Every action performed during a database engineering proj-
ect can be recorded in the history of the project. Further main-
tenance, migration or extension of the software product will
largely profit from this history. For example, the rationale of a
decision cannot be ignored when trying, later on, to modify
the components resulting from that decision. This history will
be both readable by humans for documentation and formal, to
be analysed and reused by the CASE tool. Indeed,
1. a history generally will need some polishing before being

usable (trimming it from traces of trial-and-errors, from dis-
carded branches, from loops, etc.)

2. useful information can be extracted from a history (design
quality, auditing, skill, design heuristics, resource alloca-
tion, timing, etc.)

3. new derived histories can be obtained, such as a fictive for-
ward history built by inverting the history of a reverse engi-
neering process [12]

4. propagating design changes through the design products
can be automated, or at least assisted, by replaying the his-
tory of the former design.

C. Supporting CASE tool

Process modelling would be an academic activity only if no
CASE support were not provided to control the processes.
The approach proposed in this paper is being implemented in
the DB-MAIN CASE tool. This work is carried out in the DB-
Process framework, a joint project of DB-MAIN R&D pro-
gramme ([9],[13]).

D. Position of the paper

Along the years, several research teams did and still are do-
ing work on process modelling aspects. Among these, we can
name the DAIDA project [16], NATURE [20], MENTOR [7],
PROART [21], then PRIME [22], the team of J. Souquières
[27] who mainly focus on requirements engineering. We can
also cite [2] which is more oriented toward software develop-
ment process modelling. Business process modelling is sup-
ported by, among others, Adele [6], Process Weaver which al-
lows the designed processes to be followed and is/Modeler,
ProcessWise, IDEF [18], SilverRun or SOCCA [3] which are
just descriptive tools.

A common point between most of them is the use of a de-
clarative language or a graphical language and the need for an

Database engineering processes with DB-MAIN

D. Roland, J-L. Hainaut, J-M. Hick, J. Henrard, V. Englebert

FUNDP, University of Namur
rue Grandgagnage 21, 5000 Namur, Belgium

dro,jlh,jmh,jhe,ven@info.fundp.ac.be

inference engine to use their methods. All these views are at
the opposite of ours since we use a semi-procedural scheme.
Some of these projects record the activities that are performed
as well as the rationales. In [23], C. Potts and G. Bruns ex-
plain why and how to record the reasons for design decisions.
Reference [6] explains how processes can be supported, with
the recording of what is actually done and with versioning, but
stays at a high level; we know what tool has been used, with
what products, when, but we do not know what happened dur-
ing the use of the tool. [22] goes beyond by trying to better in-
tegrate all the tools used.

On another side, meta-CASE like MetaEdit+ [17] or Kog-
ger [4] allow industries to personalise their tools , but it re-
mains mostly on the graphical level; even when processes are
taken into account, it is rather simple.

In this paper, we describe how DB-MAIN allows a user-
defined methodology (defined with the MDL language) to be
followed and how all the performed actions are logged.

E. Contribution of the paper

We will see, with the DB-MAIN CASE tool, how a generic
CASE tool can be methodologically personalised. We can al-
low a method engineer to develop and implement his/her own
method. The tool, according to the method, can assist a data-
base engineer in his/her job. At the same time, all the actions
of the engineer can be logged. Since we use a very well inte-
grated tool, the log of every processes are well integrated; we
can know exactly what happened at every moment. This al-
lows us to reuse the history not just for replay but also for a
broad range of purposes.

We will also see how the particularity of a procedural lan-
guage to describe methods can be very beneficial to the engi-
neer in the way the method is presented to him/her.

II. PROCESS MODELLING WITH THE MDL LAN-
GUAGE

The Method Description Language (MDL) is aimed at de-
scribing the way of working of analysts when they perform
database engineering activities. Firstly, we will recall the con-
cepts on which the language is based. Secondly, we will give
a short description of the language.

A. Basic concepts

The proposed design process modelling approach is based
on the transformational paradigm according to which each de-
sign process transforms a (possibly empty) set of products
into another set of products:
• a product is a document used, modified or produced during

the life cycle of the information system; as we focus specifi -
cally on database specification, we will describe mainly da-
tabase schemas and database-related texts such as DDL
scripts, reports or application program sources.

• a design process is described by the operations that have
been carried out to transform input products into output
products; each operation is in turn a process; atomic proc-
esses are called primitive processes, while the others will be

called engineering processes; each process is supposed to
be goal-driven, i.e., it tries to make its output products com-
pliant with specific design criteria, generally called require-
ments [19];

• a product type describes the properties of a class of prod-
ucts that play a definite role in the system life cycle; a prod-
uct is an instance of a product type;

• a process type describes the general properties of a class of
processes that have the same purpose, and that process
products of the same type; a process is an instance of a pro-
cess type;

• the strategy of a process type specifies how any process of
this type must be, or can be, carried out in order to solve
the problems it is intended to, and to make it produce out-
put products that satisfy its requirements; in particular, a
strategy mentions what processes, in what order, are to be
carried out, and following what reasoning. Only engineer-
ing process types are defined by a strategy. Primitive proc-
ess types are basic types of operations that are performed
by the analyst, or by a CASE tool.

• Several product types can be given the same, or similar,
properties. Hence the concept of product model. A model
defines a general class of products by stating the compo-
nents they are allowed to include, the constraints that must
be satisfied, and the names to be used to denote them. A
product type is expressed into a product model1

• A set of product types and process types define a method.

B. Short presentation of the MDL language

MDL is both a non-deterministic and a semi-procedural
language. It is non-deterministic when it describes processes
to be freely performed by humans. In this case, the CASE tool
behaves as an assistant that suggests what to do and not how
to do it. MDL can also be semi-procedural when it forces the
analyst to do things in a definite order. In many cases, proce-
dural specifications can be a natural approach to solve some
classes of problems in a reliable way.

A method description is made of two parts. In the first one,
product models are described. They are derived from the ge-
neric entity/object-relationship model (GER) described in [8]
which is aimed at describing information structures as well as
processing units. A product model is made of a subset of the
GER concepts onto which constraints are specified. These
concepts are those of the GER model which are renamed. For
instance, an entity type is called a table in a relational model
and an object class in an OO model. The constraints define
the valid constructs of the specific model, as described in
[24]. For instance, a relational model has no relationship types
and all the tables have at least one column.

The second part of a method description concerns the proc-
ess types. Like in most procedural languages, a process type
as a signature and a body:

1 For practical reasons we did not find it necessary to define the concept of
process model, at least in a first step, thus making the architecture inele-
gantly asymmetrical. In particular, we identified a strong need for higher
level abstraction above product types, while we found few convincing exam-
ples for process types.

• The signature is made of a name, and the list of product
types they need as input, they produce in output or they can
update.

• The product types of the signature are locally defined; they
specify the product model they are derived from, as well as
an identifying name and the number of instance that are al-
lowed (exactly one, at least one, between two and five, no
limit,...).

• The body is the strategy to be followed. This strategy is
written in a traditional way, including some special instruc-
tions which are far less traditional. A strategy is a sequence
of operations and control structures.

• An operation can be:
• a call to another process type
• a call to a built-in function of the supporting CASE tool
• a call to an external function written in the built-in lan-

guage of the CASE tool
• a call to the use of a toolbox. A toolbox is a list of tools

of the CASE tool the user can use at a given time. When
the execution of a process of this type reaches a call to a
toolbox, the method is suspended and the hand is passed
to the user who is allowed to do whatever he wants in the
CASE tool using only the allowed tools. This corre-
sponds to an engineering activity that could not be for-
malised (in reverse-engineering for instance). The proc-
ess goes on until the user explicitly declares his/her job is
done.

• Control structures are the traditional if...then...else, while,
repeat, as well as some special non-deterministic structures
as one (choose one process in the given list and do it),
some (choose one or several processes in the given list) and
each (do all the processes in the given list, but in any or-
der).
A more precise definition of the MDL language can be

found in [25].

III. HISTORIES

The history of a database engineering process contains the
trace of all the activities that were performed, all the products
involved, all the hypotheses that were made, all the versions
of the products resulting of those hypotheses as well as all the
decisions taken. Naturally, the result is a complex graph. We
will now examine this graph more precisely. But first of all,
we will see why we need reusable histories. A more complete
description of histories can be found in [26].

A. Reusable histories

An history can be reused in a great variety of ways, for dif-
ferent purposes, among which:
• the history can be used to make the database project evolve
• for documentation, it can simply be browsed or replayed
• the history of a reverse engineering part can be inverted in

order to generate a possible forward engineering process
that could have been followed at development time; this
new history can be reused for reengineering [11]

• the history can be cleaned; all actions that do not participate
directly to the development of the project can be removed;

this comprises processes performed according to some hy-
potheses that were rejected in later decisions, some simple
tests (just to see what it would give), some actions followed
by their inverse due to backtracking,... This cleaning can be
useful in order to generate examples or tutorials to learn
new analysts how to do

• it can be analysed in order to evaluate the quality of the
work of the analyst

• it can be analysed in order to evaluate the method and to
improve it.

B. History components

The first basic elements of histories are processes. A his-
tory should contain all the processes that are performed during
an engineering activity that complies with a method. The
method being specified in a procedural language, the resulting
history is a tree of process calls. The whole project is made of
processes, each of them being made of sub-processes and so
on. Since a process is made of several sub-processes, it is use-
ful to know in what order they have been performed, e.g., seri-
ally or in parallel. So each process will be stamped by its be-
ginning date and time (mandatory) and end date and time.
They will be identified by a name and the begin time stamp.
In order to document his/her work, the analyst will add a de-
scription (some free text) to each process. We can have two
kinds of processes: primitive processes at the operational level
and engineering processes at the decisional level.

A primitive process is a process performed using only
primitives (built-in function of the CASE tool or external
functions written in the built-in language of the CASE tool). It
can be performed by an analyst when the method allows
him/her to use a toolbox or by the CASE tool itself when the
method calls built-in or external functions directly. The execu -
tion of primitives can be recorded in a log file. Since the his-
tory is aimed at being reused, both by analysts and by the
CASE tool itself, the log file has to be readable, precise and
complete. A text file with a well defined syntax and the possi-
bility to add comments and bookmarks seems to be a good so-
lution. Since the primitives are database schema transforma-
tions and since these transformations can be formally defined
and are proved to be reversible [13], precision and complete-
ness are straight-forward if we store the signature of the trans-
formations. In fact, we can store more than just the signature
when needed because more information may be useful for re-
verse operations (e.g. it is necessary to keep the name of de-
leted attributes). Readability is achieved by the choice of a
readable syntax for the transformation signatures and by the
adjunction of comments.

An engineering process follows a strategy given by the
method. As the analyst who follows the method can make hy-
potheses, try different solutions and decide to abandon some
of them, it is no longer possible to record actions in a linear
way like in the log file. The history of an engineering process
is a graph. Hence, the whole history is in fact a tree of graphs;
leaf nodes are primitive processes with their log files and non-
leaf nodes are engineering processes with their graph.

Commonly, in software process modelling tools or business
process modelling tools, engineering processes histories are
well recorded, but they often use third party tools (editors,
text processors, compilers, debuggers,...), the primitive proc-
esses in this paper, which have their own logging facilities,
and all the logs are generally independent one from the other.
In this paper, at the contrary, we link them all together in or-
der to reuse them as a whole.

The second basic elements of an history are the products.
Since an analyst has the possibility to generate different ver-
sions of a product, they will be identified by their name and
their version. For the same reason as processes, we will add
some descriptions to products. A given product can be the re-
sult of several processes, but, at some definite time, the prod-
uct has to be declared as finished. From that moment, the
product is locked. It is no longer possible to modify it. Hence,
each product must have a locked/unlocked state. The type
(schema or text) of the product has no influence on the his-
tory.

Finally, the third basic elements of an history are the deci-
sions. A decision is a special kind of process, the sole differ-
ence being that it does not alter products, nor does it generate
any product. There are two kinds of decisions. The first one is
a decision that must be made according to the followed
method. For instance, when the condition of an if or a while
statement needs a response of the analyst (if ask("Do you want
to optimise the relational schema ?")...). The second kind of
decision is one that follows hypotheses. When an analyst has
to perform a process, he/she can make different hypotheses
and perform the same process several times with each hy-
pothesis in mind. The description of each process will contain
the hypothesis. Each process will generate its own version of
the products. When all the processes are over, the analyst
chooses one version among all to continue his/her work. The
process of decision will show the choice and its description
will contain the rationales that lead to that choice. This second
kind of decision is not linked to the followed method, it can
be made at any time.

IV. THE DB-MAIN CASE TOOL

After describing the main two components for process engi-
neering activities, we will now see how we can link them in
practice, with the use of a CASE tool. Since this work is per-
formed in the DB-MAIN project, we will integrated processes
to the DB-MAIN CASE tool. In a first time, we will describe
briefly the CASE tool and see what are its particularities.
Then, we will see how the repository has been extended. Fi-
nally, we will see how the human-machine interface of the
CASE tool can be enriched in order to fulfil our goals: to
bring a methodological assistance to the user and to record
his/her work.

A. DB-MAIN, a generic CASE tool

DB-MAIN is a database engineering oriented CASE tool. A
general software engineering CASE tool is more or less a con-
trol centre that allows a good integration of a series of third-
party tools like general-purpose text editors, compilers,... A

database engineer also needs a series of tools to perform
his/her job, but these are very specific tools like specialised
graphical editing tools. All those specific tools are included in
DB-MAIN.

Its main characteristics are the following:
• It uses a generic entity/object-relationship (GER) model for

drawing database schemas. This model allows us to repre-
sent a very broad range of concepts from different abstrac-
tion levels and from different specific models; e.g. ER,
NIAM or UML conceptual schemas can be drawn with the
same generic concepts as for relational or COBOL logical
schemas or for Oracle or Realia COBOL schemas at the
physical level.

• Transformation based : two semantically equivalent sche-
mas can be mapped together by a series of reversible, se-
mantics preserving transformations [9]. It allows us to
smoothly transform a schema from an abstraction level to
another one. All these transformations can be logged.

• It manages complex history recording such as depicted in
section III.

• It is methodology-free. It is a space in which database engi-
neers can work freely, performing all the standard and non-
standard activities. It can be used as well for forward engi-
neering, reverse engineering, evolution,...
A more complete description can be found in [14] and [9].

B. Repository extension

For the history to be reusable, all its parts need to be cor-
rectly interconnected and attached to the followed method.
[21] shows that necessity and how all the information are
stored in his repository. In DB-MAIN, the repository will also
contain all the information. But, since it is an integrated tool,
all parts of the histories can be integrated to the repository, in-
cluding the logs of the lower level tools. This allows us to be
able to consider the history as a product that can, at its turn,
be reused for different purposes, even transformed.

The DB-MAIN repository is a C++ object oriented data-
base that stores a whole project, with all the products and the
processes that are performed on them (see figure 1). Database
schemas (GER schemas) are stored in a well structured way
(via sch_comp relationship type), while texts are just a link to
the files that contain them. A complete description of this re-
pository can be found in [5].

The log of the primitive processes that modify products are
attached to each product: each product has a log property
which is a sequence of all the logs of the primitive processes
separated with bookmarks.

As we saw in section III, engineering processes have much
more complex histories: graphs. We can see on the lower half
of figure 1 that an engineering process can be made of several
sub-processes. Each process uses products in input, generates
or updates products (usage field is respectively input, output
or update). Hence, links between processes pass through
products: if process A generates product P and process B uses
P in input, we immediately see that A was performed before
B; or, if process A and process B both use product P in input,
we can say that the order in which they were performed does

not matter. Furthermore, the time and date fields of processes
give more information about the real performance order.

The repository must also store the method that is followed
during a project. A method written in the MDL language must
be parsed before being used. The syntactical tree resulting of
the parsing (LL(1) parser, see [1]) is stored in the repository.
The top half part of figure 1 shows the C++ representation of
this tree. We can see that the different processes and the dif-
ferent products of the history are linked (through ep_inst,
pp_inst, dec_inst, text_inst and sch_inst relationship types) to
their process types and product types in the syntactical tree.

With such a repository, it is easy to present the syntactical
tree of the method in a graphical algorithmic way (see [24])
and the history in various ways (see [25]).

C. Human-machine interface extension

DB-MAIN, in its original form, is a generic CASE tool
which allows a database engineer to do whatever he or she
wants, but without any methodological guidance. Now that we
have added a method in the repository, we will examine how
we can extend the CASE tool environment in order to con-
strain and help the engineer. All along the way, we will keep
in mind that if the engineer needs to be constrained, he/she
also needs some freedom. A CASE tool that would not let any
freedom is bound to be rapidly abandoned.

In this section, we will see how we can present the method
to be followed by the engineer, then how he/she is helped and
constrained to follow it. We will also see that we can modify
the look and feel of the CASE tool according to the method.
Finally, we will explain how the methodological engine can
check the engineer’s work.

i. Method presentation
Most method description languages on the market are de-

clarative languages. For each action that can be performed,
conditions of enactment have to be specified. At a given time,
according to the current state of the products in development,
the conditions can be evaluated and the processes that can be
enacted can easily be listed. So, it is easy for an engineer to
know what to do at that time. But these tools lack the possibil -
ity to show globally to the engineer the way of working he has
to follow. He/she can know what to do now, but not what to
do next. It is like wandering in a labyrinth with very high
walls all around you. You know the way you have followed up
until now, you know your goal is to go out of there, but you
do not know what still remains to be explored. If the labyrinth
is on a paper and you can see it all in once, it is much easier to
find the way out of it. That is what we will do, we will show it
all in once.

The MDL language is procedural. Like every procedural
language, it can easily be shown in an algorithmic way: proc-
ess types are drawn as rectangles and the control flow is
shown with arrows. Figure 2a shows a small example of an
engineering process type where the control flow starts at the
first half circle (round line at the bottom), follows bold lines,
and ends at the second half circle. Conditions (in if...then...
else structures or loops) are drawn as diamonds. The main dif-
ference with traditional procedural language is the non-deter-
minism: loops can have no condition, or some special struc-
tures forces the engineer to take himself/herself the decision
of the path to follow. On figure 2, we can see a some structure
(the user can choose to perform processes of one or many of
the sub-process types, in the order he/she wants) enclosed in a
loop without condition.

The product types that are used in input, output or update of
the process types are shown with ellipses and their usage (the
data flow) with thin arrows.

Engineering sub-process types can themselves be drawn the
same way. An engineer can know how to perform a COBOL
schema extraction by double-clicking on its rectangle in the
figure 2a to draw the algorithm of its strategy, which is shown
on figure 2b. Primitive processes have no strategy, but a more
detailed description (a textual description, the list of the tools
that can be used,...) can be obtained as well.

ii. The use of the method
To show the method to follow is interesting in itself, but

one of our main goal is to help an engineer to follow it. This
help must have the following characteristics:
• it must be clear, a genuine reference, that can answer all the

questions an engineer can have
• it must be able to say to the engineer, at every moment,

what he/she can do
• it must constrain the engineer to do precise things
• at the same time, it must allow the engineer to have some

freedom to perform his job at his/her will; for instance, to
draw a schema in which every entity type must have at least
one attribute, the methodological engine should not enforce
the engineer to add an attribute straight away, what matters

Fig. 1 - Part of the DB-MAIN repository concerning histories

0-N1-1 sch_comp

1-1

0-1
strategy

0-N
made_of

0-1
part_of

sub_statement

0-11-1 perform

0-N

0-N

actual_parameter

0-1

0-N

formal_argument

1-1

0-N

invokes

1-1 0-1

condition

1-1

0-N

has

1-1

0-N

has

0-N

0-N

is_of

1-1

0-N

compliant_with

0-N 0-N
proc_prod
usage
checkpoint

0-N

0-1

pp_inst

0-N

0-1

made_of

0-N

0-1

ep_inst

0-1

0-N

dec_inst

text
path
type_of_file

schema

method
name
version
...

statement
state

process_type
name
title
id: name

control_structure

product
name
version
creation_date
last_update
log
id: name

version

process
name
start_date
start_time
end_date[0-1]
end_time[0-1]
id: name

start_date
start_time

primitive_process

product_type
name
title
...
id: name

product_model
name
title
id: name

constraints
...

concepts
...

engineering_processdecision

...

expression primitive_proc_call engineering_proc_call

is just that every entity type has at least one attribute when
the whole schema is finished

• it can automate some work in order to relieve the engineer
from tedious repetitive actions, asking him/her to intervene
only when necessary, when a decision has to be taken.
The first point seems to be obvious. Every good book about

a method is in accordance with that. The way we show the
method, presented here above, is a good starting point. By
adding to every process type and to every product type an ex-
planation in natural language we can complement and clarify
these algorithms in order to achieve this goal. These explana-
tions can be shown on demand. That way, the algorithm is
really a full hypertext documentation of the method. This is
more difficult to achieve with declarative languages.

The second point, on the other hand, is so basic that every
CASE tool can do it. We add a state to each process type in
the syntactical tree of the method (see figure 1). This state will
be shown on screen with colours. Process types can have four
possible state value: waiting, executable, in progress and
done. In figure 2a we can see that the first process type is
drawn in a lighter colour than the others, it is in the in prog-
ress state. On figure 2b, the first process type is in still another
colour, it is in the executable state. All others are in the wait-

ing state. It shows the engineer that he/she can perform a pro-
cess of that type. When he/she finishes that process, the col-
ours are updated. In figure 2a, when the engineer finishes a
process of the second type (COPY), since the control flow in-
dicates a some structure, two process types (De-optimization
and Untranslation) will be coloured (get the executable state).
So, the engineer will be able to choose between both of them.

At the finest grain of the decomposition, we find primitive
process types. Some of them are a simple use of a built-in tool
(like the COPY process). When this use is over, the process
type state can be set to done automatically by the methodo-
logical engine. Other primitive process types allow the engi-
neer to work by himself/herself (for instance, he/she is al-
lowed to draw a schema). The methodological engine waits
for him/her to say he/she has finished: the done state has to be
set manually. An engineering process can be declared done
both automatically or manually as we will see later.

As we said in the fourth characteristic, people like freedom,
and it is necessary to allow an engineer to do some special
things. One of them2 is the possibility to do the same thing
several times, starting by stating different hypotheses. A proc-
ess type which already has instances can be asked to be per-
formed one more time. This will create a new branch in the
graph of the history, stamped with the new hypothesis. From
there, the first colour will be used again. Thus, both colours
can be found at several places in the hypertext algorithm.

If several process types are in the executable state, the engi-
neer has to choose which one to perform. But, if only a proc-
ess of one type can be executed, the method engine can do it
automatically. Hence, the method engine can do a large part
of the job and stop to ask the engineer to intervene only when
necessary, either because an engineering process type contains
a non-deterministic structure (which makes at least two proc-
esses to be coloured), because a primitive process type is en-
countered that needs to be performed by an engineer, or be-
cause a decision needs to be taken. So, the methodological
engine can start processes, follow their strategy as long as it
does not encounter decisions to be taken, execute built-in
primitive processes and terminate engineering process auto-
matically. But, sometimes, engineers like to know what is go-
ing on so it is necessary for that automation to be turned off.

Since the syntactical tree of the method and the history are
stored in the same repository and since the engineer enacts
processes by selecting coloured box on the algorithmic repre-
sentation of the syntactical tree, the recording of the history is
straightforward.

iii. Toolboxes
Some primitive processes can only be performed by a hu-

man engineer, using a toolbox. We already saw that the meth-
odological engine can let the engineer work by his/her own
and wait or him/her to declare that the job is done.

In the MDL method definition, the method engineer can de-
fine toolboxes (see section II). For instance, to edit a rela-
tional schema, the method engineer could define a toolbox
with tools for creating, deleting or editing tables, columns,

2We will not examine all possible liberties in this paper, it should be rather
long, and of few interest here.

Fig. 2a A process...

Fig. 2b ...and one of its sub-processes

Reverse Engineering
COBOL programs

Conceptual schema

COBOL programs

Physical schema

COBOL schema extraction

Physical schema

Logical schema

COPY

S

Logical schema

De-optimization

Logical schema

Untranslation

Logical schema

Conceptual schema

Conceptual normalization

COBOL schema extraction
COBOL programs

Pysical schemas

COBOL programs

COBOL schemas

COBOL schema auto extraction

COBOL programs

COBOL schemas

COBOL schema enrichment

COBOL schemas

Pysical schemas

Schema integration

COBOL schemas

Pysical schemas

COPY

primary keys and foreign keys. When the method needs for
the database engineer to work, it has to specify with what tool-
box. When the methodological engine encounters this primi-
tive process, it has to adapt the CASE tool in order to allow
the engineer to use the tools in the toolbox and to disallow the
use of all other tools. Hence, the methodological engine has to
add or remove entries from the menus, enable or disable but-
tons in dialogue boxes, enable or disable keyboard shortcuts
and monitor mouse clicks in the schema views.

iv. Lexical adaptation of dialogues
A product model, as we showed in section II, is made of

two parts: concepts and constraints.
The methodological engine must use the concepts to adapt

the CASE tool interface to the model of the product the engi-
neer works on. For instance, if a relational schema model de-
fines the concepts of, among others, table (renaming of entity
type in the GER), and column (attribute in the GER), then the
CASE tool interface must be updated by replacing every oc-
currence of the words entity type and attribute by the words
table and column respectively, each time the engineer works
with a relational model compliant product. This implies to
keep the menus, the dialogue boxes and all the messages up-
to-date.

v. Automatic checking
The constraints defined in every product model have to be

used to insure that the engineer respects the rules of the game
when allowed to use a toolbox. But, as we said above, we do
not intend to refrain the engineer to work as he/she likes. For
instance, a relational model may demand that all tables have at
least one column with the constraint:

ATT_per _ET (1,N)
stating that the number of attribute (renamed column by the
concepts) per entity type (table) must be comprised between 1
and N. A possible solution should be to check if that con-
straint is verified each time the engineer performs an action
and react if it does not; when a table is created, the methodo-
logical engine may react by forcing the creation of a column,
or it could impeach the removal of the last column of a table.
But this can be against the engineer's will. The fact that the
schema is really compliant to the relational model is important
when the engineer states the job is over, but, during his/her
work, a temporarily non-compliant schema is perfectly accept -
able. The engineer can prefer to create several tables at once,
then add the columns. Hence, a better solution is to let the en-
gineer work freely with all the tools of the current toolbox and
validate the schema when he/she wants to change the state of
the process type to done. If the validation fails, the state is not
changed and a list of the violated constraints with the ele-
ments of the schema that violate the constraints is reported.
This is an hypertext list, a click on an element in the list se-
lects that element in the schema.

In some occasions, it can be useful to give still more free-
dom to the engineer: it is preferable if the schema is perfectly
compliant to its model, but some transgressions can be al-
lowed. In that case, the method engineer can define, with the
MDL language, a weakly compliant product type. When the

methodological engine encounters such a situation, the auto-
matic validation is performed and the list of validation is re-
ported, but a message box informs the engineer he/she can go
on anyway, informs him/her of the risks to do so and asks
him/her what to do.

It is to be noted that this validation of the schema that is
automatically performed at the end of a job can also be manu-
ally requested by the engineer as an help.

V. CONCLUSION

DB-MAIN is originally a generic database oriented CASE
tool, but we saw, all along this paper, how it can be methodol-
ogically personalised. It allows an engineer to be guided and con -
strained to respect the rules of the game, while relieved from te-
dious work and free to act and take decisions as often as
possible.

An evaluation version of the DB-MAIN CASE tool is avail -
able on the following site:

http://www.info.fundp.ac.bel/~dbm

REFERENCES

[1] A. Aho, R. Sethi, J. Ullman, Compilers: principles, tech-
niques and tools, Addison-Wesley Publishing Company,
1985

[2] B. Curtis, M. I. Kelner, J. Over, Process Modeling, Com-
munications of the ACM, September 1992, Vol.35 No.9,
pp. 75-90.

[3] Gregor Engels and Luuk P.J. Groenewegen, SOCCA:
Specifications of Coordinated and Cooperative Activities,
in A.Finkelstein, J.Kramer, and B.A. Nuseibeh, editors,
Software Process Modelling and Technology, pp. 71-102.
Research Studies Press, Taunton, 1994.

[4] J. Ebert, R. Süttenbach, I. Uhe, Meta-CASE world-wide .
Technical report 24/98, Fachberichte informatik, Univer-
sität Koblenz-Landau, Institut für Informatik, Rheinau,
Koblenz, 1998.

[5] V. Englebert, Voyager 2 reference manual, technical DB-
MAIN documentation.

[6] Jacky Estublier and Rubby Casallas, The Adele Configu-
ration Manager, in Tichy editor, Configuration Manage-
ment. John Wiley & Sons, 1994.

[7] G. Grosz, S. Si-Said, C. Rolland, Mentor : un environne-
ment pour l'ingénierie des méthodes et des besoins, Actes
du Congrès INFORSID, pp. 33-51, Bordeaux, juin 1996.

[8] J-L. Hainaut, A Generic Entity-Relationship Model, in
Proc. of the IFIP WG 8.1 Conf. on Information System
Concepts : an in-depth analysis, North-Holland, 1989.

[9] J-L. Hainaut, V. Englebert, J. Henrard, J-M. Hick, D.
Roland, Database evolution : the DB-MAIN Approach, in
Proc. of the 13th International Conference on ER Ap-
proach, Manchester, Springer-Verlag, LNCS 881, 1994

[10]J-L Hainaut, V. Englebert, J. Henrard, J-M. Hick, D.
Roland, Requirements for Information System Reverse
Engineering Support, in Proc. of the IEEE Working Con-
ference on Reverse Engineering, Toronto, IEEE Com-
puter Society Press, July 1995

[11]J.-L. Hainaut, V. Englebert, J. Henrard, J.-M. Hick, D.
Roland, Database Reverse Engineering : from Require-
ment to CARE tools, Journal of Automated Software En-
gineering, 3(2), 1996, Kluwer Academic Press.

[12]J.-L. Hainaut, J. Henrard, J.-M. Hick, D. Roland, V.
Englebert, Database Design Recovery, in Proc of the 8th
Conf. on Advanced Information Systems Engineering
(CAISE'96), Springer-Verlag, 1996.

[13]J.-L. Hainaut, Specification preservation in schema
transformations - Application to semantics and statistics,
Data & Knowledge Engineering, 16(1), 1996, Elsevier
Science Publish.

[14]J. Henrard, V. Englebert, J.-M. Hick., D. Roland, J.-L.
Hainaut, DB-MAIN: un atelier d'ingénierie de bases de
données, in Ingénierie des Systèmes d’Information, Vol.
4, n° 1/1996, pp. 87-116.

[15]J. Henrard, J.-M. Hick, D. Roland, V. Englebert, J.-L.
Hainaut, Techniques d'analyse de programmes pour la
rétro-ingénierie de base de données, Actes du congrès
INFORSID, pp. 215-232, Bordeaux, 4-7 juin 1996.

[16]M. Jarke, editor. Database Application Engineering with
DAIDA, Springer - Verlag, 1993.

[17]S. Kelly, K. Lyytinen, M. Rossi. MetaEdit+: A Fully
Configurable Multi-User and Multi-Tool CASE and
CAME Environment. In P. Constantopoulos, J. Mylopou-
los, and Y. Vassiliou, editors, Proceedings of the 8th Inter-
national Conference CaiSE’96 on Advanced Information
Systems Engineering, LNCS 1080, pp. 1-21, Heraklion,
Crete, Greece, May 1996, Springer-Verlag.

[18]R. J. Mayer, P. C. Benjamin, B. E. Caraway and M. K.
Painter, A Framework and a Suite of Methods for Busi-
ness Process Reengineering, www.idef.com/articles, Oc-
tober 30, 1998.

[19]J. Mylopoulos, L. Chung, B. Nixon, Representing and
Using Nonfunctional Requirements: A Process-Oriented
Approach, IEEE TSE, Vol. 18, No. 6, June 1992, pp.
483-497.

[20]Nature Team, Defining Visions In Context: Models,
Processes And Tools For Requirements Engineering, In-
firmation Systems, Vol. 21, No 6, 1996, pp. 515-547.

[21]K. Pohl, Process-Centered Requirements Engineering,
Research Studies Press Ltd,1996

[22]K. Pohl, K. Weidenhaupt, R. Dömges, P. Haumer, M.
Jarke, R. Klamma, PRIME: Towards process-integrated
environments, to appear in ACM Transactions on Soft-
ware Engineering and Methodology.

[23]C. Potts, G. Bruns, Recording the Reasons for Design
Decisions, in ICSE 88, 1988, pp. 418-427.

[24]D. Roland, Un langage de description de processus :
définition des prédicats structurels, technical report, sep-
tembre 1995.

[25]D. Roland, J.-L. Hainaut, Database Engineering Process
Modelling, Proceedings of the first International Work-
shop on the Many Facets of Process Engineering, pp. 37-
49, Gammarth, Tunisia, September 22-23, 1997.

[26]D. Roland, , J-L. Hainaut, J. Henrard, J-M. Hick, V.
Englebert, Database engineering process history, Pro-
ceedings of the second International Workshop on the
Many Facets of Process Engineering, pp. 63-76, Gam-
marth, Tunisia, May 1999.

[27]J. Souquières, N. Lévy, Description of Specification De-
velopments, in Proceedings of RE'93, San Diego (CA),
1993.

[28]X. Wang, P. Loucopoulos, The Development of Phedias:
a CASE Shell, Proceedings of the Seventh International
Wokshop on Computer-Aided Software Engineering, pp.
122-131, Toronto, July 10-14, 1995.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2000

	Database Engineering Processes with DB-MAIN
	D. Roland
	J. L. Hainaut
	J. M. Hick
	J. Henrard
	V. Englebert
	Recommended Citation

	Microsoft Word - Ecis.doc

	search: search

