79 research outputs found
Staging for distant metastases in operable breast cancer: a suggested expansion of the ESMO guideline recommendation for staging imaging of node-negative, hormonal receptor-negative disease
We evaluated the impact of staging procedures to detect asymptomatic distant metastases (DM) in the management of women with operable invasive breast cancer (BC, entire cohort: n = 866). Out of 472 patients with lymph node (LN)-negative disease (pN0), DM were found in four cases (detection rate: 0.8%). All four patients presented with established risk factors: hormone receptor (HR)-negative status, HER2-positive status, n = 3; ‘triple-negative' disease, n = 1. Considering the subgroup of LN-negative patients whose tumors showed the risk factor ‘negative HR status' (n = 66), the detection rate of DM was 6%. The detection rates of DM in higher pN categories were as follows: pN1:1.7%; pN2:9.5%; pN3:13.5%. We generally support the international guidelines, including those published by the European Society for Medical Oncology (ESMO) which emphasize that patients with early-stage BC do not profit from radiological staging for the detection of DM and recommend refraining from this. However, we would expand these guidelines and propose that screening should be carried out in node-negative patients whose tumors show established tumor-related risk factors (e.g. HR-negative and HER2-positive status), since in this particular subcohort, the detection rate of DM is with 6% similarly high as that of patients with four to nine positive LN
Antibody-based immunotherapy for ovarian cancer: where are we at?
Cytoreductive surgery and chemotherapy continue to be the mainstay of ovarian cancer treatment. However, as mortality from advanced ovarian cancer remains very high, novel therapies are required to be integrated into existing treatment regimens. Immunotherapy represents an alternative and rational therapeutic approach for ovarian cancer based on a body of evidence supporting a protective role of the immune system against these cancers, and on the clinical success of immunotherapy in other malignancies. Whether or not immunotherapy will have a role in the future management of ovarian cancer is too early to tell, but research in this field is active. This review will discuss recent clinical developments of selected immunotherapies for ovarian cancer which fulfil the following criteria: (i) they are antibody-based, (ii) target a distinct immunological pathway, and (iii) have reached the clinical trial stage. Specifically, the focus is on Catumaxomab (anti-EpCAM × anti-CD3), Abagovomab, Oregovomab (anti-CA125), Daclizumab (anti-CD25), Ipilimumab (anti-CTLA-4), and MXD-1105 (anti-PD-L1). Catumaxomab has reached phase III clinical trials and exhibits promise with reports, showing that it can cause a significant and sustained reduction in ascites. Phase I-III clinical trials continue to be conducted on the other antibodies, some of which have had encouraging reports. We will also provide our perspective on the future of immunotherapy for ovarian cancer, and how it may be best employed in treatment regimen
5PMICROTUBULE-DEPOLYMERIZING AGENTS USED IN ANTIBODY-DRUG-CONJUGATES INDUCE ANTITUMOR ACTIVITY BY STIMULATION OF DENDRITIC CELLS
Antibody drug conjugates (ADCs) are emerging as powerful treatment strategies with outstanding target specificity and high therapeutic activity in cancer patients. While >30 ADCs are currently being investigated in clinical trials, brentuximabvedotin and T-DM1 represent clinically approved ADCs in cancer patients. We hypothesized that their sustained clinical responses could be related to the stimulation of an antitumor immune response. Indeed, the two microtubule-destabilizing agents Dolastatin 10 and Ansamitocin P3, from which the cytotoxic components of brentuximabvedotin and T-DM1 are derived, may serve as prototypes for a class of agents that induce tumor cell death and convert tumor resident, tolerogenic dendritic cells (DCs) into efficient antigen presenting cells (APCs). The two drugs induced phenotypic and functional maturation of murine splenic as well as human monocyte-derived DCs. In contrast, microtubule-stabilizing agents such as taxanes did not display this feature. In tumor models, both Dolastatin 10 and Ansamitocin P3 efficiently promoted antigen uptake and migration of tumor-resident DCs to tumor-draining lymph nodes, thereby potentiating tumor-specific T cell responses. Underlining the requirement of an intact host immune system for the full therapeutic benefit of these two compounds, their antitumor effect was far less pronounced in mice lacking adaptive immunity or dendritic cells. Combinations with immune checkpoint inhibition (anti-CTLA-4/-PD-1) did further augment antitumor immunity and tumor rejection, which was reflected by reduced Treg numbers and elevated effector function of tumor resident T cells. Ultimately, we were able to demonstrate peripheral immune cell activation and brisk T cell infiltration into tumors in patients previously treated with BrentuximabVedotin. Experiments are currently ongoing to investigate the immunological mode of action of T-DM1 using orthotopic breast cancer models and patients undergoing treatment. Our data reveal a novel mode of action for microtubule-depolymerizing agents and provide a strong rationale for clinical treatment regimens combining these with immune-based therapies. Disclosure: All authors have declared no conflicts of interes
Intention to Inform Relatives, Rates of Cascade Testing, and Preference for Patient-Mediated Communication in Families Concerned with Hereditary Breast and Ovarian Cancer and Lynch Syndrome: The Swiss CASCADE Cohort.
Cascade screening for Tier 1 cancer genetic conditions is a significant public health intervention because it identifies untested relatives of individuals known to carry pathogenic variants associated with hereditary breast and ovarian cancer (HBOC) and Lynch syndrome (LS). The Swiss CASCADE is a family-based, open-ended cohort, including carriers of HBOC- and LS-associated pathogenic variants and their relatives. This paper describes rates of cascade screening in relatives from HBOC- and LS- harboring families, examines carriers' preferences for communication of testing results, and describes theory-based predictors of intention to invite relatives to a cascade screening program. Information has been provided by 304 index cases and 115 relatives recruited from September 2017 to December 2021. On average, 10 relatives per index case were potentially eligible for cascade screening. Approximately 65% of respondents wanted to invite relatives to the cohort, and approximately 50% indicated a preference for patient-mediated communication of testing results, possibly with the assistance of digital technology. Intention to invite relatives was higher for first- compared to second- and third-degree relatives, but was not different between syndromes or based on relatives' gender. The family environment and carrying pathogenic variants predicts intention to invite relatives. Information helps optimize delivery of tailored genetic services
A study of Tycho's SNR at TeV energies with the HEGRA CT-System
Tycho's supernova remnant (SNR) was observed during 1997 and 1998 with the
HEGRA Cherenkov Telescope System in a search for gamma-ray emission at
energies above
~1 TeV. An analysis of these data, ~65 hours in total, resulted in no
evidence for TeV gamma-ray emission. The 3sigma upper limit to the gamma-ray
flux (>1 TeV) from Tycho is estimated at 5.78x10^{-13} photons cm^{-2} s^{-1},
or 33 milli-Crab. We interpret our upper limit within the framework of the
following scenarios:
(1) that the observed hard X-ray tail is due to synchrotron emission. A lower
limit on the magnetic field within Tycho may be estimated B>=22 microG,
assuming that the RXTE-detected
X-rays were due to synchrotron emission. However, using results from a
detailed model of the ASCA emission, a more conservative lower limit B>=6
microG is derived.
(2) the hadronic model of Drury, Aharonian & Voelk, and (3) the more recent
time-dependent kinetic theory of Berezhko & Voelk.
Our upper limit lies within the range of predicted values of both hadronic
models, according to uncertainties in physical parameters of Tycho, and shock
acceleration details. In the latter case, the model was scaled to suit the
parameters of Tycho and re-normalised to account for a simplification of the
original model.
We find that we cannot rule out Tycho as a potential contributor at an
average level to the Galactic cosmic-ray flux.Comment: 9 pages, 6 figures. Accepted for publication in Astronomy and
Astrophysic
The E3 ubiquitin ligase EDD is an adverse prognostic factor for serous epithelial ovarian cancer and modulates cisplatin resistance in vitro
Despite a high initial response rate to first-line platinum/paclitaxel chemotherapy, most women with epithelial ovarian cancer relapse with recurrent disease that becomes refractory to further cytotoxic treatment. We have previously shown that the E3 ubiquitin ligase, EDD, a regulator of DNA damage responses, is amplified and overexpressed in serous ovarian carcinoma. Given that DNA damage pathways are linked to platinum resistance, the aim of this study was to determine if EDD expression was associated with disease recurrence and platinum sensitivity in serous ovarian cancer. High nuclear EDD expression, as determined by immunohistochemistry in a cohort of 151 women with serous ovarian carcinoma, was associated with an approximately two-fold increased risk of disease recurrence and death in patients who initially responded to first-line chemotherapy, independently of disease stage and suboptimal debulking. Although EDD expression was not directly correlated with relative cisplatin sensitivity of ovarian cancer cell lines, sensitivity to cisplatin was partially restored in platinum-resistant A2780-cp70 ovarian cancer cells following siRNA-mediated knockdown of EDD expression. These results identify EDD as a new independent prognostic marker for outcome in serous ovarian cancer, and suggest that pathways involving EDD, including DNA damage responses, may represent new therapeutic targets for chemoresistant ovarian cancer
TP53 regulates human AlkB homologue 2 expression in glioma resistance to Photofrin-mediated photodynamic therapy
2010-2011 > Academic research: refereed > Publication in refereed journa
Comparison of printed glycan array, suspension array and ELISA in the detection of human anti-glycan antibodies
Anti-glycan antibodies represent a vast and yet insufficiently investigated subpopulation of naturally occurring and adaptive antibodies in humans. Recently, a variety of glycan-based microarrays emerged, allowing high-throughput profiling of a large repertoire of antibodies. As there are no direct approaches for comparison and evaluation of multi-glycan assays we compared three glycan-based immunoassays, namely printed glycan array (PGA), fluorescent microsphere-based suspension array (SA) and ELISA for their efficacy and selectivity in profiling anti-glycan antibodies in a cohort of 48 patients with and without ovarian cancer. The ABO blood group glycan antigens were selected as well recognized ligands for sensitivity and specificity assessments. As another ligand we selected P1, a member of the P blood group system recently identified by PGA as a potential ovarian cancer biomarker. All three glyco-immunoassays reflected the known ABO blood groups with high performance. In contrast, anti-P1 antibody binding profiles displayed much lower concordance. Whilst anti-P1 antibody levels between benign controls and ovarian cancer patients were significantly discriminated using PGA (p = 0.004), we got only similar results using SA (p = 0.03) but not for ELISA. Our findings demonstrate that whilst assays were largely positively correlated, each presents unique characteristic features and should be validated by an independent patient cohort rather than another array technique. The variety between methods presumably reflects the differences in glycan presentation and the antigen/antibody ratio, assay conditions and detection technique. This indicates that the glycan-antibody interaction of interest has to guide the assay selection
Cathepsins B, L and cystatin C in cyst fluid of ovarian tumors
Contains fulltext :
88032.pdf (publisher's version ) (Closed access)INTRODUCTION: In cancer, an extracellular and membrane bound localization of cathepsins contribute to the invasion of tumor cells at the basement membrane. METHODS: This is the first study that explored levels of cathepsins B (CatB), L (CatL) and their inhibitor cystatin C (CysC) in the cystic fluid (CF) of ovarian tumors (n = 110). RESULTS: CF contained considerable amounts of CatB, CatL and CysC. Remarkable differences in CatB and CatL and CysC CF levels were found between different histopathological tumor subtypes. Levels of CatB and CysC were significantly higher in CF of malignant serous tumors compared to those found in benign serous tumors (p = 0.010 and p = 0.001 respectively), whereas levels of CatL were significantly higher in CF of malignant mucinous tumors compared to those found in benign mucinous tumors (p = 0.035). CatB and CysC showed a strong correlation in the group of patients with malignant serous tumors (p < 0.001; R = 0.921) suggesting that the increase in CatB might be balanced by a corresponding increase in CysC. CONCLUSION: Further studies are warranted to investigate cathepsins as possible prognostic biomarkers for the aggressiveness of ovarian cancer.1 mei 201
MAL2 and tumor protein D52 (TPD52) are frequently overexpressed in ovarian carcinoma, but differentially associated with histological subtype and patient outcome
Background: The four-transmembrane MAL2 protein is frequently overexpressed in breast carcinoma, and MAL2 overexpression is associated with gain of the corresponding locus at chromosome 8q24.12. Independent expression microarray studies predict MAL2 overexpression in ovarian carcinoma, but these had remained unconfirmed. MAL2 binds tumor protein D52 (TPD52), which is frequently overexpressed in ovarian carcinoma, but the clinical significance of MAL2 and TPD52 overexpression was unknown. Methods: Immunohistochemical analyses of MAL2 and TPD52 expression were performed using tissue microarray sections including benign, borderline and malignant epithelial ovarian tumours. Inmmunohistochemical staining intensity and distribution was assessed both visually and digitally. Results: MAL2 and TPD52 were significantly overexpressed in high-grade serous carcinomas compared with serous borderline tumours. MAL2 expression was highest in serous carcinomas relative to other histological subtypes, whereas TPD52 expression was highest in clear cell carcinomas. MAL2 expression was not related to patient survival, however high-level TPD52 staining was significantly associated with improved overall survival in patients with stage III serous ovarian carcinoma (log-rank test, p < 0.001; n = 124) and was an independent predictor of survival in the overall carcinoma cohort (hazard ratio (HR), 0.498; 95% confidence interval (CI), 0.34-0.728; p < 0.001; n = 221), and in serous carcinomas (HR, 0.440; 95% CI, 0.294-0.658; p < 0.001; n = 182). Conclusions: MAL2 is frequently overexpressed in ovarian carcinoma, and TPD52 overexpression is a favourable independent prognostic marker of potential value in the management of ovarian carcinoma patients.11 page(s
- …