179 research outputs found

    A Novel Autosomal Recessive GJA1 Missense Mutation Linked to Craniometaphyseal Dysplasia

    Get PDF
    Craniometaphyseal dysplasia (CMD) is a rare sclerosing skeletal disorder with progressive hyperostosis of craniofacial bones. CMD can be inherited in an autosomal dominant (AD) trait or occur after de novo mutations in the pyrophosphate transporter ANKH. Although the autosomal recessive (AR)form of CMD had been mapped to 6q21-22 the mutation has been elusive. In this study, we performed whole-exome sequencing for one subject with AR CMD and identified a novel missense mutation (c.716G>A, p.Arg239Gln) in the C-terminus of the gap junction protein alpha-1 (GJA1) coding for connexin 43 (Cx43). We confirmed this mutation in 6 individuals from 3 additional families. The homozygous mutation cosegregated only with affected family members. Connexin 43 is a major component of gap junctions in osteoblasts, osteocytes, osteoclasts and chondrocytes. Gap junctions are responsible for the diffusion of low molecular weight molecules between cells. Mutations in Cx43 cause several dominant and recessive disorders involving developmental abnormalities of bone such as dominant and recessive oculodentodigital dysplasia (ODDD; MIM #164200, 257850) and isolated syndactyly type III (MIM #186100), the characteristic digital anomaly in ODDD. However, characteristic ocular and dental features of ODDD as well as syndactyly are absent in patients with the recessive Arg239Gln Cx43 mutation. Bone remodeling mechanisms disrupted by this novel Cx43 mutation remain to be elucidated

    2,4-dihydroxy benzaldehyde derived Schiff bases as small molecule Hsp90 inhibitors: rational identification of a new anticancer lead

    Get PDF
    Hsp90 is a molecular chaperone that heals diverse array of biomolecules ranging from multiple oncogenic proteins to the ones responsible for development of resistance to chemotherapeutic agents. Moreover they are over-expressed in cancer cells as a complex with co-chaperones and under-expressed in normal cells as a single free entity. Hence inhibitors of Hsp90 will be more effective and selective in destroying cancer cells with minimum chances of acquiring resistance to them. In continuation of our goal to rationally develop effective small molecule azomethines against Hsp90, we designed few more compounds belonging to the class of 2,4-dihydroxy benzaldehyde derived imines (1-13) with our validated docking protocol. The molecules exhibiting good docking score were synthesized and their structures were confirmed by IR, (1)H NMR and mass spectral analysis. Subsequently, they were evaluated for their potential to suppress Hsp90 ATPase activity by Malachite green assay. The antiproliferative effect of the molecules were examined on PC3 prostate cancer cell lines by adopting 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay methodology. Finally, schiff base 13 emerged as the lead molecule for future design and development of Hsp90 inhibitors as anticancer agents.Fil: Dutta Gupta, Sayan. Osmania University; India. Jawaharlal Nehru Technological University; IndiaFil: Revathi, B.. Osmania University; IndiaFil: Mazaira, Gisela Ileana. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de QuĂ­mica BiolĂłgica; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; ArgentinaFil: Galigniana, Mario Daniel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Instituto de BiologĂ­a y Medicina Experimental. FundaciĂłn de Instituto de BiologĂ­a y Medicina Experimental. Instituto de BiologĂ­a y Medicina Experimental; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de QuĂ­mica BiolĂłgica; ArgentinaFil: Subrahmanyam, C. V. S.. Osmania University; IndiaFil: Gowrishankar, N. L.. Swami Vivekananda Institute of Pharmaceutical Sciences; IndiaFil: Raghavendra, N. M.. Osmania University; Indi

    Subtyping of renal cortical neoplasms in fine needle aspiration biopsies using a decision tree based on genomic alterations detected by fluorescence in situ hybridization

    Get PDF
    Objectives: To improve the overall accuracy of diagnosis in needle biopsies of renal masses, especially small renal masses (SRMs), using fluorescence in situ hybridization (FISH), and to develop a renal cortical neoplasm classification decision tree based on genomic alterations detected by FISH. Patients and Methods: Ex vivo fine needle aspiration biopsies of 122 resected renal cortical neoplasms were subjected to FISH using a series of seven-probe sets to assess gain or loss of 10 chromosomes and rearrangement of the 11q13 locus. Using specimen (nephrectomy)-histology as the ‘gold standard’, a genomic aberration-based decision tree was generated to classify specimens. The diagnostic potential of the decision tree was assessed by comparing the FISH-based classification and biopsy histology with specimen histology. Results: Of the 114 biopsies diagnostic by either method, a higher diagnostic yield was achieved by FISH (92 and 96%) than histology alone (82 and 84%) in the 65 biopsies from SRMs (<4 cm) and 49 from larger masses, respectively. An optimized decision tree was constructed based on aberrations detected in eight chromosomes, by which the maximum concordance of classification achieved by FISH was 79%, irrespective of mass size. In SRMs, the overall sensitivity of diagnosis by FISH compared with histopathology was higher for benign oncocytoma, was similar for the chromophobe renal cell carcinoma subtype, and was lower for clear-cell and papillary subtypes. The diagnostic accuracy of classification of needle biopsy specimens (from SRMs) increased from 80% obtained by histology alone to 94% when combining histology and FISH. Conclusion: The present study suggests that a novel FISH assay developed by us has a role to play in assisting in the yield and accuracy of diagnosis of renal cortical neoplasms in needle biopsies in particular, and can help guide the clinical management of patients with SRMs that were non-diagnostic by histology

    Transdermal microconduits by microscission for drug delivery and sample acquisition

    Get PDF
    BACKGROUND: Painless, rapid, controlled, minimally invasive molecular transport across human skin for drug delivery and analyte acquisition is of widespread interest. Creation of microconduits through the stratum corneum and epidermis is achieved by stochastic scissioning events localized to typically 250 Όm diameter areas of human skin in vivo. METHODS: Microscissioning is achieved by a limited flux of accelerated gas: 25 Όm inert particles passing through the aperture in a mask held against the stratum corneum. The particles scize (cut) tissue, which is removed by the gas flow with the sensation of a gentle stream of air against the skin. The resulting microconduit is fully open and may be between 50 and 200 Όm deep. RESULTS: In vivo adult human tests show that microconduits reduce the electrical impedance between two ECG electrodes from approximately 4,000 Ω to 500 Ω. Drug delivery has been demonstrated in vivo by applying lidocaine to a microconduit from a cotton swab. Sharp point probing demonstrated full anaesthesia around the site within three minutes. Topical application without the microconduit required approximately 1.5 hours. Approximately 180 Όm deep microconduits in vivo yielded blood sample volumes of several Όl, with a faint pricking sensation as blood enters tissue. Blood glucose measurements were taken with two commercial monitoring systems. Microconduits are invisible to the unaided eye, developing a slight erythematous macule that disappears over days. CONCLUSION: Microscissioned microconduits may provide a minimally invasive basis for delivery of any size molecule, and for extraction of interstitial fluid and blood samples. Such microconduits reduce through-skin electrical impedance, have controllable diameter and depth, are fully open and, after healing, no foreign bodies were visible using through-skin confocal microscopy. In subjects to date, microscissioning is painless and rapid

    “Genes”

    Get PDF
    In order to describe a cell at molecular level, a notion of a “gene” is neither necessary nor helpful. It is sufficient to consider the molecules (i.e., chromosomes, transcripts, proteins) and their interactions to describe cellular processes. The downside of the resulting high resolution is that it becomes very tedious to address features on the organismal and phenotypic levels with a language based on molecular terms. Looking for the missing link between biological disciplines dealing with different levels of biological organization, we suggest to return to the original intent behind the term “gene”. To this end, we propose to investigate whether a useful notion of “gene” can be constructed based on an underlying notion of function, and whether this can serve as the necessary link and embed the various distinct gene concepts of biological (sub)disciplines in a coherent theoretical framework. In reply to the Genon Theory recently put forward by Klaus Scherrer and JĂŒrgen Jost in this journal, we shall discuss a general approach to assess a gene definition that should then be tested for its expressiveness and potential cross-disciplinary relevance
    • 

    corecore