101 research outputs found

    Longitudinal cortical split sign as a potential diagnostic feature for cortical osteitis

    Get PDF
    Septic cortical osteitis is a rare but distinct type of bone infection that is characterized as a hematogenously seeded infection predominantly or exclusively limited to the cortex. Diagnosis is difficult and often delayed. Combination of clinical and laboratory findings together with the typical radiological findings consisting of vertically orientated cortical osteolysis, the ‘cortical split sign’ and the predominantly cortical disruption at the periosteal side of the cortex may lead to the correct diagnosis

    Development of an enhanced health-economic model and cost-effectiveness analysis of tiotropium + olodaterol Respimat® fixed-dose combination for chronic obstructive pulmonary disease patients in Italy

    Get PDF
    Background: The objective of this study was to compare the cost-effectiveness of the fixed-dose combination (FDC) of tiotropium + olodaterol Respimat® FDC with tiotropium alone for patients with chronic obstructive pulmonary disease (COPD) in the Italian health care setting using a newly developed patient-level Markov model that reflects the current understanding of the disease. Methods: While previously published models have largely been based around a cohort approach using a Markov structure and GOLD stage stratification, an individual-level Markov approach was selected for the new model. Using patient-level data from the twin TOnado trials assessing Tiotropium + olodaterol Respimat® FDC versus tiotropium, outcomes were modelled based on the trough forced expiratory volume (tFEV1) of over 1000 patients in each treatment arm, tracked individually at trial visits through the 52-week trial period, and after the trial period it was assumed to decline at a constant rate based on disease stage. Exacerbation risk was estimated based on a random-effects logistic regression analysis of exacerbations in UPLIFT. Mortality by age and disease stage was estimated from an analysis of TIOSPIR trial data. Cost of bronchodilators and other medications, routine management, and costs of treatment for moderate and severe exacerbations for the Italian setting were included. A cost-effectiveness analysis was conducted over a 15-year time horizon from the perspective of the Italian National Health Service. Results: Aggregating total costs and quality-adjusted life years (QALYs) for each treatment cohort over 15 years and comparing tiotropium + olodaterol Respimat® FDC with tiotropium alone, resulted in mean incremental co

    Increased hippocampal accumulation of autophagosomes predicts short-term recognition memory impairment in aged mice

    Get PDF
    Constitutive macroautophagy involved in the turnover of defective long-lived proteins and organelles is crucial for neuronal homeostasis. We hypothesized that macroautophagic dysregulation in selective brain regions was associated with memory impairment in aged mice. We used the single-trial object recognition test to measure short-term memory in 18 aged mice compared to 22 young mice and employed immunohistochemistry to assess cellular distribution of proteins involved in the selective degradation of ubiquitinated proteins via macroautophagy. Values of the discrimination ratio (DR, a measure of short-term recognition memory performance) in aged mice were significantly lower than those in young mice (median, 0.54 vs. 0.67; p = 0.005, U test). Almost exclusively in aged mice, there were clusters of puncta immunoreactive for microtubule-associated protein 1 light chain 3 (LC3), ubiquitin- and LC3-binding protein p62, and ubiquitin in neuronal processes predominantly in the hippocampal formation, olfactory bulb/tubercle, and cerebellar cortex. The hippocampal burden of clustered puncta immunoreactive for LC3 and p62 exhibited inverse linear correlations with DR in aged mice (ρ = −0.48 and −0.55, p = 0.044 and 0.018, respectively, Spearman’s rank correlation). These findings suggest that increased accumulation of autophagosomes within neuronal processes in selective brain regions is characteristic of aging. The dysregulation of macroautophagy can adversely affect the turnover of aggregate-prone proteins and defective organelles, which may contribute to memory impairment in aged mice

    Catalog of Galactic Beta Cephei Stars

    Full text link
    We present an extensive and up-to-date catalog of Galactic Beta Cephei stars. This catalog is intended to give a comprehensive overview of observational characteristics of all known Beta Cephei stars. 93 stars could be confirmed to be Beta Cephei stars. For some stars we re-analyzed published data or conducted our own analyses. 61 stars were rejected from the final Beta Cephei list, and 77 stars are suspected to be Beta Cephei stars. A list of critically selected pulsation frequencies for confirmed Beta Cephei stars is also presented. We analyze the Beta Cephei stars as a group, such as the distributions of their spectral types, projected rotational velocities, radial velocities, pulsation periods, and Galactic coordinates. We confirm that the majority of these stars are multiperiodic pulsators. We show that, besides two exceptions, the Beta Cephei stars with high pulsation amplitudes are slow rotators. We construct a theoretical HR diagram that suggests that almost all 93 Beta Cephei stars are MS objects. We discuss the observational boundaries of Beta Cephei pulsation and their physical parameters. We corroborate that the excited pulsation modes are near to the radial fundamental mode in frequency and we show that the mass distribution of the stars peaks at 12 solar masses. We point out that the theoretical instability strip of the Beta Cephei stars is filled neither at the cool nor at the hot end and attempt to explain this observation

    Identification and Evolution of Drug Efflux Pump in Clinical Enterobacter aerogenes Strains Isolated in 1995 and 2003

    Get PDF
    BACKGROUND: The high mortality impact of infectious diseases will increase due to accelerated evolution of antibiotic resistance in important human pathogens. Development of antibiotic resistance is a evolutionary process inducing the erosion of the effectiveness of our arsenal of antibiotics. Resistance is not necessarily limited to a single class of antibacterial agents but may affect many unrelated compounds; this is termed 'multidrug resistance' (MDR). The major mechanism of MDR is the active expulsion of drugs by bacterial pumps; the treatment of gram negative bacterial infections is compromised due to resistance mechanisms including the expression of efflux pumps that actively expel various usual antibiotics (beta-lactams, quinolones, ...). METHODOLOGY/PRINCIPAL FINDINGS: Enterobacter aerogenes has emerged among Enterobacteriaceae associated hospital infections during the last twenty years due to its faculty of adaptation to antibiotic stresses. Clinical isolates of E. aerogenes belonging to two strain collections isolated in 1995 and 2003 respectively, were screened to assess the involvement of efflux pumps in antibiotic resistance. Drug susceptibility assays were performed on all bacterial isolates and an efflux pump inhibitor (PAbetaN) previously characterized allowed to decipher the role of efflux in the resistance. Accumulation of labelled chloramphenicol was monitored in the presence of an energy poison to determine the involvement of active efflux on the antibiotic intracellular concentrations. The presence of the PAbetaN-susceptible efflux system was also identified in resistant E. aerogenes strains. CONCLUSIONS/SIGNIFICANCE: For the first time a noticeable increase in clinical isolates containing an efflux mechanism susceptible to pump inhibitor is report within an 8 year period. After the emergence of extended spectrum beta-lactamases in E. aerogenes and the recent characterisation of porin mutations in clinical isolates, this study describing an increase in inhibitor-susceptible efflux throws light on a new step in the evolution of mechanism in E. aerogenes

    An Animal Model of Emotional Blunting in Schizophrenia

    Get PDF
    Schizophrenia is often associated with emotional blunting—the diminished ability to respond to emotionally salient stimuli—particularly those stimuli representative of negative emotional states, such as fear. This disturbance may stem from dysfunction of the amygdala, a brain region involved in fear processing. The present article describes a novel animal model of emotional blunting in schizophrenia. This model involves interfering with normal fear processing (classical conditioning) in rats by means of acute ketamine administration. We confirm, in a series of experiments comprised of cFos staining, behavioral analysis and neurochemical determinations, that ketamine interferes with the behavioral expression of fear and with normal fear processing in the amygdala and related brain regions. We further show that the atypical antipsychotic drug clozapine, but not the typical antipsychotic haloperidol nor an experimental glutamate receptor 2/3 agonist, inhibits ketamine's effects and retains normal fear processing in the amygdala at a neurochemical level, despite the observation that fear-related behavior is still inhibited due to ketamine administration. Our results suggest that the relative resistance of emotional blunting to drug treatment may be partially due to an inability of conventional therapies to target the multiple anatomical and functional brain systems involved in emotional processing. A conceptual model reconciling our findings in terms of neurochemistry and behavior is postulated and discussed

    Overexpression of Dyrk1A Is Implicated in Several Cognitive, Electrophysiological and Neuromorphological Alterations Found in a Mouse Model of Down Syndrome

    Get PDF
    Down syndrome (DS) phenotypes result from the overexpression of several dosage-sensitive genes. The DYRK1A (dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A) gene, which has been implicated in the behavioral and neuronal alterations that are characteristic of DS, plays a role in neuronal progenitor proliferation, neuronal differentiation and long-term potentiation (LTP) mechanisms that contribute to the cognitive deficits found in DS. The purpose of this study was to evaluate the effect of Dyrk1A overexpression on the behavioral and cognitive alterations in the Ts65Dn (TS) mouse model, which is the most commonly utilized mouse model of DS, as well as on several neuromorphological and electrophysiological properties proposed to underlie these deficits. In this study, we analyzed the phenotypic differences in the progeny obtained from crosses of TS females and heterozygous Dyrk1A (+/-) male mice. Our results revealed that normalization of the Dyrk1A copy number in TS mice improved working and reference memory based on the Morris water maze and contextual conditioning based on the fear conditioning test and rescued hippocampal LTP. Concomitant with these functional improvements, normalization of the Dyrk1A expression level in TS mice restored the proliferation and differentiation of hippocampal cells in the adult dentate gyrus (DG) and the density of GABAergic and glutamatergic synapse markers in the molecular layer of the hippocampus. However, normalization of the Dyrk1A gene dosage did not affect other structural (e.g., the density of mature hippocampal granule cells, the DG volume and the subgranular zone area) or behavioral (i.e., hyperactivity/attention) alterations found in the TS mouse. These results suggest that Dyrk1A overexpression is involved in some of the cognitive, electrophysiological and neuromorphological alterations, but not in the structural alterations found in DS, and suggest that pharmacological strategies targeting this gene may improve the treatment of DS-associated learning disabilities

    Selective synaptic remodeling of amygdalocortical connections associated with fear memory

    Full text link
    Neural circuits underlying auditory fear conditioning have been extensively studied. Here we identified a previously unexplored pathway from the lateral amygdala (LA) to the auditory cortex (ACx) and found that selective silencing of this pathway using chemo- and optogenetic approaches impaired fear memory retrieval. Dual-color in vivo two-photon imaging of mouse ACx showed pathway-specific increases in the formation of LA axon boutons, dendritic spines of ACx layer 5 pyramidal cells, and putative LA-ACx synaptic pairs after auditory fear conditioning. Furthermore, joint imaging of pre- and postsynaptic structures showed that essentially all new synaptic contacts were made by adding new partners to existing synaptic elements. Together, these findings identify an amygdalocortical projection that is important to fear memory expression and is selectively modified by associative fear learning, and unravel a distinct architectural rule for synapse formation in the adult brain
    corecore