5,710 research outputs found

    Derivative-free Gauss-Newton-like Algorithm for Parameter Estimation

    Get PDF
    This paper develops the idea of parameter estimation using the derivative-free nonlinear least-squares algorithm. The algorithm was found efficient and convenient for many applications

    From dense-dilute duality to self duality in high energy evolution

    Full text link
    I describe recent work on inclusion of Pomeron loops in the high energy evolution. In particular I show that the complete eikonal high energy evolution kernel must be selfdual.Comment: Talk given at DIS05, April 2005, Madiso

    Size-dependent bandgap and particle size distribution of colloidal semiconductor nanocrystals

    Get PDF
    A new analytical expression for the size-dependent bandgap of colloidal semiconductor nanocrystals is proposed within the framework of the finite-depth square-well effective mass approximation in order to provide a quantitative description of the quantum confinement effect. This allows one to convert optical spectroscopic data (photoluminescence spectrum and absorbance edge) into accurate estimates for the particle size distributions of colloidal systems even if the traditional effective mass model is expected to fail, which occurs typically for very small particles belonging to the so-called strong confinement limit. By applying the reported theoretical methodologies to CdTe nanocrystals synthesized through wet chemical routes, size distributions are inferred and compared directly to those obtained from atomic force microscopy and transmission electron microscopy. This analysis can be used as a complementary tool for the characterization of nanocrystal samples of many other systems such as the II-VI and III-V semiconductor materials.Comment: 9 pages, 5 figure

    A Self-consistent DFT+DMFT scheme in the Projector Augmented Wave : Applications to Cerium, Ce2O3 and Pu2O3 with the Hubbard I solver and comparison to DFT+U

    Full text link
    An implementation of full self-consistency over the electronic density in the DFT+DMFT framework on the basis of a plane wave-projector augmented wave (PAW) DFT code is presented. It allows for an accurate calculation of the total energy in DFT+DMFT within a plane wave approach. In contrast to frameworks based on the maximally localized Wannier function, the method is easily applied to f electron systems, such as cerium, cerium oxide (Ce2O3) and plutonium oxide (Pu2O3). In order to have a correct and physical calculation of the energy terms, we find that the calculation of the self-consistent density is mandatory. The formalism is general and does not depend on the method used to solve the impurity model. Calculations are carried out within the Hubbard I approximation, which is fast to solve, and gives a good description of strongly correlated insulators. We compare the DFT+DMFT and DFT+U solutions, and underline the qualitative differences of their converged densities. We emphasize that in contrast to DFT+U, DFT+DMFT does not break the spin and orbital symmetry. As a consequence, DFT+DMFT implies, on top of a better physical description of correlated metals and insulators, a reduced occurrence of unphysical metastable solutions in correlated insulators in comparison to DFT+U.Comment: 19 pages, 9 figures. This is an author-created, un-copyedited version of an article accepted for publication in Journal of Physics: Condensed Matter. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at doi: 10.1088/0953-8984/24/7/07560

    Observation of the parallel-magnetic-field-induced superconductor-insulator transition in thin amorphous InO films

    Full text link
    We study the response of a thin superconducting amorphous InO film with variable oxygen content to a parallel magnetic field. A field-induced superconductor-insulator transition (SIT) is observed that is very similar to the one in normal magnetic fields. As the boson-vortex duality, which is the key-stone of the theory of the field-induced SIT, is obviously absent in the parallel configuration, we have to draw conclusion about the theory insufficiency.Comment: 3 pages, 4 figure

    Antiprotons Annihilation in the Galaxy As A Source of Diffuse Gamma Background

    Get PDF
    The existence of antimatter domains in baryon asymmetrical Universe can appear as the cosmological consequence of particle theory in inflationary models with non-homogeneous baryosynthesis. Such a domain can survive in the early Universe and form globular cluster of antimatter stars in our Galaxy. The model of antimatter pollution of Galaxy and annihilation with matter gas is developed. The proton-antiproton annihilation gamma flux is shown to reproduce the observed galactic gamma background measured by EGRET. From comparison with observational data the estimation on the maximally allowed amount of antimatter stars, possibly present in our Galaxy, is found.Comment: LaTeX2e, 18 pages, 3 PostScript figures. Submitted to Yad.Fi

    Possible Effects of the Existence of the 4th Generation Neutrino

    Get PDF
    The 4th generation of fermions predicted by the phenomenology of heterotic string models can possess new strictly conserved charge, which leads, in particular, to the hypothesis of the existence of the 4th generation massive stable neutrino. The compatibility of this hypothesis with the results of underground experiment DAMA searching for weakly interactive particles of dark matter and with the EGRET measurements of galactic gamma--background at energies above 1 GeV fixes the possible mass of the 4th neutrino at the value about 50 GeV. The possibility to test the hypothesis in accelerator experiments is considered. Positron signal from the annihilation of relic massive neutrinos in the galactic halo is calculated and is shown to be accessible for planned cosmic ray experiments.Comment: 10 pages, 4 PostScript figure, Latex2
    • …
    corecore