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Foreword 

The Population Program at IIASA deals with the analysis of consequences of 
demographic changes. To estimate the consequences one needs to analyze the data 
from various sources, to develop the models, and t o  identify the i r  parameter. 

This paper by Dr. Scherbov and Dr. Golubkov develops the idea of parameter 
estimation using the derivative-free nonlinear least-squares algorithm. The algo- 
rithm w a s  found efficient and convenient f o r  many applications. 

Anatoli Yashin 
Deputy Leader 
Population Program 
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An important problem of parameter estimation of different models using sta- 

tistical data about modeled process very often can be reduced to  the least-squares 

problem. In this paper the derivative-free nonlinear least-squares algorithm, 

which w a s  found very efficient in the sense of response function calculations, is 

presented. 

Let 4 ( = N )  be the components of an observed data vector - 4 = (31,32, . ,$,I,) and $$ (q) (i = TN) be the components of a vector valued 

response function $(q) = ($1(~),$2(~).....$N(q))T. Let q = ( f i . ~ ~ . . . . , ~ ~ ) ~  be the 

vector of estimated parameters. Then, according to  the Generalized Least Squares 

Method (GLSM), the estimate c = (cl,c2, . . . , cnlT could be found as a solution to 

the following nonlinear programming problem 

where Pt is a given symmetric, positively half-defined square matrix of weights, 

and <a, b > means scalar production. 

Gauss-Newton-like algorithms are known to be the most efficient iterative 

methods for solving problem (1). According to those algorithms the linear approx- 

imation of #(q) about the current value of parameter vector g is  calculated at 

each iteration, and a l inear least-squares problem is solved to  obtain a new value 

of parameter q . 
In the presented algorithm, as in many other derivative-free Gauss-Newton- 

like algorithms [1,2,3,4], the linear approximation of #(q) is evaluated according 

to n +1 values of #(q) calculated at the previous iterations in order t o  estimate 



the new parameter vector and to pass the updated set of parameters to the next 

iteration. Gauss-Newton-like algorithms differ from each o ther  generally by the 

l inear approximation of #(q)  and by use of the information obtained at the previous 

iterations. Let us dwell upon the most important features that  distinguish the 

presented algorithms among others of the same type. 

Let us assume that  on the k-th iteration w e  have q! .q$ , . . . ,q,k +l -estimates of 

solution computed at the previous iterations and a correspondent set of 

#f,#$. . . . which are necessary f o r  the linear approximation of #(q) ,  where 

#f = #(qf) .  The upper index shows the iteration number. Let us assume on the 

f i rs t  i teration F0, = min q , where q = F(qt) .  
1st <n +1 

The new estimate of parameters q  on the k-th iteration q;, will be 

where A Q ~  is a n QP n matrix of parameter increments and Aqk i s  a vector that will 

be evaluated on the k-th iteration. 

The l inear approximation y ( q )  of the vector #(q)  could be written in a form 

AX whose matrix ( -  i s  derived from n + l  previously calculated values 
AQ 

qf ,  # f ,  (i = 1," +1)  t o  satisfy conditions 

Supposing nonsingularity of matrix A@, w e  obtain 

The closer qf are to each other ,  the higher is the accuracy of approximation (3) .  

Vector is a solution of 



and is calculated from 

The new (k +I)-th estimation qk zi is 

where hk is a s tep  length along Aqfj, a direction which is obtained from a one- 

dimensional function minimization @ (A) = F(Q; + h A&) or under the condition 

that  F(q; f,;) < F(q; In the present version of the algorithm, a one- 

dimensional minimization w a s  based on a second-order approximation of @ (A) and 

use of the well-known fact  that  in regular cases h k ,  which minimizes Fk(h) ,  ap- 

proaches to a value close to 1 during the Gauss-Newton algorithm's convergency. 

The (k +l)-th i teration begins with the calculation of t (qk+ l )  and then the 

AS and AQk matrices are calculated. Before describing these matrix calcula- 

tions we should mention that  during the i terative process the non-singularity of - 
AQk must be controlled, where 

and ( ( Aqf ( ( i s  a standard Euclidian norm of the vector Aqf. 

-k That is because ill conditionality of AQ leads to ill conditionality of AQk and 

A*, and consequently of A ~ ,  which, in turn, leads to the worsening of the 

algorithm's convergency. 

-1: Let Ed be the minimal feasible value of 1 det AQ 1 when convergency is sti l l 

normal. Then AQk (k r 1 )  should be constructed in a way that  

(det  Gk+ll r E d  when k 2 1 ;  O < E d  . (4 ) 

Let us assume that  (4) is t rue. Then AQk+l building s ta r t s  with changing in AQk the 

column whose number is  Lk according to: 

where L is defined from 



Lk = Argmin IS: I . 
1Si Sn 

The values of sf ( i  = G) are scalar  coefficients in the representation of AqH 

which may be obtained from (3'), (3"). and (3"'). 

Such a choice of Lk provides the best conditionality of L\gk+l. This could be 

easily derived from 

From this expression and from (5) i t  follows that in & the column whose changing 

provides the best conditionality of Zk+l and is substituted by hkAqj$.  If 

1 det zk 1 2 E d ,  then A$ is  constructed by changing one column with number 

Lk according to: 

One of the distinctions of the presented algorithm from o ther  variants of 

derivative-free Gauss-Newton-like algorithms is the choice of the column in A@ 

that will be substituted by qi:i - qk+l a f te r  the k-th iteration. In those algo- 

rithms the column that w a s  calculated before the other  (on iteration with the smal-  

lest number) and hence usually corresponds to the values of parameters which 

differ mostly from the i r  cur ren t  values is substituted by qt f i  - q t + l ,  or which is  

the same as (h  A&). Thus the vectors of parameters which contribute to the com- 

putation of AQk are all the time "pulled up" to the i r  latest value. I t  means that the 

columns of AQk are generally calculated with the parameters which a r e  close to 

their  cur ren t  value. 

In the algorithms mentioned above, all the columns of AQ will be renewed dur- 

ing n i terations and the approximation correctness (3) will take place. For prac- 

tically widely-spread objective functions with long valley, the i r  lead surface in 

parameter space is badly stretched along some directions. It is  a well-known fact  

that descent directions f o r  these functions are ear ly  tangent to level surface, and 

therefore they are very close to the direction in which level surface is  stretched. 



Thus, while i teration number k increases i t  can occur that the columns of zk and 

ACk, and the direction of descent A& may be calculated incorrectly due to compu- 

tational e r ro rs .  

In the presented algorithm the worsening of conditionality of sk occurs 

essentially rare ly  than in many other  algorithms of the same type. This was proved 

by numerical experiments. That is  because in the Gk of the algorithm presented 

here  i t  is  not the columns which w e r e  calculated ear l ie r  are substituted, as in 

[2,3,4], but ra the r  those which provide the maximum l inear independence of the 

columns in Gk +I. This is  i l lustrated by Figures 1 and 2. In F'igure 1 ,  substitution 

of columns in AGk is shown as i t  is  always done in most of Gauss-Newton-like algo- 

rithms. In Figure 2,  the same is  shown fo r  an algorithm presented here. 

During functioning of the presented algorithm i t  could happen that  some of the 

columns of AQk w e r e  not substituted fo r  a long period. That means that  in this 

case these columns w e r e  calculated with parameters that w e r e  f a r  from the i r  

cur ren t  values. In this case l inear approximation (3) may not be valid, and descent 

direction A q h  will be calculated incorrectly although condition (4) i s  satisfied. 

Getting r id of the algorithm operates in such a way that  during a given number of 

iterations all the columns of AQk, and hence Axk  are renewed. This is  achieved in 

the following way. 

Let us assume w e  are a t  k ' s  iteration and has already been calculated. 

Let us denote n: ( i  = 1 5 )  as the number of substitutions of the i-th column of 

AQk during k iterations, and lk is the se t  of the column's numbers 

where 

k n, = max n: , k = 0.1.2 ,... . 
1st sn 

Ng-algorithm's control parameter which accepts integer values and satisfies the 

condition NO 2 1 (No = 0 corresponds t o  the case without "pulling up" the columns 

because in this case lk r lo). Then the column with number Lk that will be substi- 



F i g u r e  1. 

F i g u r e  2.  



tuted by hkAgk instead of (5) and (5') we shall find from: 

Ik = Argmax ( $ ( 
t € I k  

- k + l  If a f t e r  substitution of Ik column ( det AQ I r E d ,  then we pass to the (k +I)-th 

iteration as already described. 

Otherwise the ortogonalization procedure is specified in the algorithm. (This 

is also the important feature of the algorithm.) According to this procedure each 

column Aqf +I; i E lk \ Ik of is tested fo r  substitution by Agf which is an  

-k +l ortogonal complement to the subspace spanned upon the o ther  columns of AQ 

and f o r  each case the determinant of thus modified matrix is calculated. Vector 

Agf is calculated by: 

&fS1 , when 1 Aq&pll 2 r j  
66'' = 

@bk+'/ (1 + bk +') when 1 AqfG1 ( < r j  

- 
where a and @ a r e  positive control parameters of algorithm; rj (j = 1 . n )  is  a vec- 

t o r  of precisions f o r  parameter estimation (iterative process stops when simul- 
k - 

taneously iqt::,j -qn+l,jl S r j ,  and JAqk, ( S r j ;  j = l , n ) ;  Gf+l i s  a unit vec- 

tor which is  ortogonal to the o ther  columns Aqt+' ( r  + i ,  r = i,h); and j is the 

vector's component number. 

If (4) is  t rue  then substitution of corresponding column by ortogonal column is  

performed and the i teration process continues. If during examination of all the 

columns Aq;+', i E rk\Lk,  condition (4) could not be satisfied, the substitution 

that  provides a maximum value of ( d e t G k  +' 1 i s  made. Then the procedure is re- 

peated but those columns of A@+' a r e  substituted by ortogonal columns which 

have not been substituted yet. 



If all Aq; +', i E rk \ Lk a r e  substituted but condition (4) is stil l not satisfied, 

then i t  is allowed to examine for substitution the columns whose numbers initially 

were not included in rk besides columns with number Lk. The condition (4) will be 

satisfied not more than for n -1 substitutions of columns of A@+' by ortogonal as 

all columns in AQk+' are ortogonal. During ortogonalization a f te r  substitution of 

the i-th column in AQk" by the corresponding ortogonal one &;+', the value 

#(qk + &!+') is calculated and the i-th column of A C ~ + '  is substituted by 

#(qk + AQt+') - #(qk) and nt+' = nt + 1. It should be mentioned that while test- 

ing (4) during ortogonalization after substituting column by the corresponding or- 

togonal one, determinant det (Zk+ ' )  is calculated recursively. This reduces the 

computational efforts. 

The n+ l  initial values of parameters q required fo r  the algorithm are gen- - 0 erated f r o m  starting value Q:+~. For i = l , n ,  QP is computed f r o m  q, +' by 

changing its i-th component by non-zero steps hi. The corresponding set of 

(10 ( i  = 17) is also calculated. The convergency of the algorithm presented here 

w a s  analytically proved. 

The comparative numerical analysis of this algorithm with several well-known 

and efficient derivative-free algorithms for minimization the sum of square w a s  

made. The total number of funation evaluations to find minimum with a given preci- 

sion w a s  considered as efficiency cr i ter ia of algorithms. 

This cr i ter ia is computer-independent and characterizes real computational 

expenditures in cases when #(q) evaluation demands much more efforts than algo- 

rithm needs itself. In this paper w e  present some results of comparison of dis- 

cussed algorithm with t w o  derivative-free Gauss-Newton-like algorithms. 

First is Powell's method for least-square problems. Its code w a s  taken from 

the Harwell Subroutine Library (HSL). Its code is VAOZA. The second method is a 

compromise between three different algorithms for  minimizing a sum of squares, 

namely Newton-Raphson, Steepest Descent, and Marquardt. Its code is VA05A, also 

from HSL. 

The last two were compared by many authors with different other algorithms 

and were discovered as being very efficient. Comparison of the discussed algo- 

rithm with VAOZA and V A 0 5 A  w a s  performed on standard test problems found in the 

literature. 



Four test problems w e r e  considered. 

1. F(q = 100(qf - q2) + (1  - q112 

6 = ( l , l )T ,  F(C) = 0 

Here 6 is a vector of parameters where minimum occurs. Minimization of 

functions 1-4 begins from different start ing values. The obtained results are 

presented in Table 1. The algorithm described in this paper  is  denoted MMGN. 

Here NFE is the number of function calculations; log(F) is the logarithm of conver- 
k 

gency e r ro r :  log(F) = logF(q I) where k, i s  the last i teration number. The sym- 

bol * means that  the algorithm failed to find the solution. 

From Table 1 i t  can be  seen that  our  algorithm in all cases except one needs 

less function evaluations than the o ther  two to converge with the same precision. 

Only in one case f o r  function 1 and start ing vector (-1.2,l) algorithm VAOSA per- 

formed less function evaluations than MMGN. But, f o r  example, f o r  function 3 

VAOSA failed once, And VAOZA failed all the times while MMGN succeeded. If w e  

compare all presented results then VAOSA and VAOZA spend, on the average, 2.2 

times more of function evaluations to find the solution than MMGN. (The cases 

where VAOSA and VAOZA failed are not taken into account.) 



Table 1. 

Method NFE log(F) NFE log(F) NFE log(F) NFE log(F) 

Function 1 
MMGN 
VA05A 
VAOZA 

Function 2 
MMGN 
VAO5A 
VA02A 

Function 3 (0.1) (-1.1) (01-1) @lo) 
MMGN 35 -14 73 -0 119 -14 72 -0 

VAOSA 123 -10 143 -11 * * 244 -0 

VAOZA * * * * * * * * 
Function 4 (10110,10,-10 (10,10,10,10) 
MMGN 25 -15 35 -15 
VA05A 57 -15 57 -15 
VA02A 63 -15 63 -15 

Thus MMGN w a s  found more efficient than algorithms fo r  HSL l ibrary.  This 

gives reason t o  expect that  i t  will be m o r e  efficient than many of the algoritms that 

w e r e  compared with the latest  two and w e r e  found less efficient. Besides as i t  fol- 

lows from [6] the MMGN algorithm was more efficient in many cases f o r  demograph- 

ic data fitting in comparison with the algorithms from the IMSL l ibrary. In conclu- 

sion i t  should be noted that  the  presented algorithm w a s  widely used f o r  data pro- 

cessing and fo r  parameter estimation in demographic, socio-economic, ecological 

and o ther  models. Big pract ical  experience dealing with this algorithm proved its 

reliability and efficiency. 



REFERENCES 

[I] Gelovani, V., V. Golubkov, and S. Scherbov (1979) Parameter Estimation b y  

Derivative-free Analog of Gauss-Newton Method, Vol. 8 (in Russian). Moscow: 

VNIISI. 

[2] Ralston, M. and R. Jenrich (1978) Dud, a derivative-free algorithm f o r  non- 

l inear least squares.  Tecnometrics Vol. 20, No. 1. 

131 Peckham, G. (1970) A new method f o r  minimizing a sum of squares without calcu- 

lating gradients. Computer Journal, No. 7. 

[4] Vereskov, A. N. Levin, and V. Fedorov (1980) Regularised derivative-free least 

squares algorithm. Issues of Cybetnetics,  No. 71  (in Russian). 

[5] Hoppez, M.J. (Ed.) (1978) Hamell  Subroutine Library,  WI3.A Report. AERE-R- 

9185. 

[6] Rogers, A. and F. Planck (1983) A General Program for Estimating 

Parametrized Model Schedules of Fertil i t  y, Mortality, Migration, and  Mari- 

tal  and  Labor Force S ta tus  R a n s i t t o n s .  Working Paper  W-83-102. Laxen- 

burg, Austria: International Institute f o r  Applied Systems Analysis. 


