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A new analytical expression for the size-dependent bandgap of colloidal semiconductor nanocrystals is
proposed within the framework of the finite-depth square-well effective mass approximation in order to
provide a quantitative description of the quantum confinement effect. This allows one to convert optical
spectroscopic data (photoluminescence spectrum and absorbance edge) into accurate estimates for the
particle size distributions of colloidal systems even if the traditional effective mass model is expected to
fail, which occurs typically for very small particles belonging to the so-called strong confinement limit.
By applying the reported theoretical methodologies to CdTe nanocrystals synthesized through wet
chemical routes, size distributions are inferred and compared directly to those obtained from atomic
force microscopy and transmission electron microscopy. This analysis can be used as a complementary
tool for the characterization of nanocrystal samples of many other systems such as the II-VI and III-V
semiconductor materials. Published by AIP Publishing. https://doi.org/10.1063/1.4999093

I. INTRODUCTION

Motivated by Ekimov’s first experimental observation
of the size dependence of nanocrystal optical properties in
semiconductor-doped glasses,1,2 Efros and Efros conducted
pioneering theoretical investigations of quantum confinement
effects in semiconductor spherical microcrystallites.3 In the
framework of the effective mass approximation for the con-
fined charge carriers, interband optical absorption coefficients
were calculated in two limiting cases or the so-called quantum
confinement regimes, depending on the ratio of the crystallite
radius (R) to the effective Bohr radius of the electron-hole pair
(aB): the strong confinement limit (R/aB � 1, individual parti-
cle confinement regime) and the weak confinement limit (R/aB

� 1, exciton confinement regime). An intermediate confine-
ment regime was also introduced for ah � R� ae (ah and ae

are the Bohr radii of the hole and the electron, respectively).
Expressions for the energy of the first excited electronic state
were derived for each case so that the bandgap enlargement
due to size quantization effects (the bandgap of the semi-
conductor particle relative to the bulk value) could be first
estimated.

Since Efros and Efros seminal contribution,3 several mod-
els have been proposed to understand the size-dependent
bandgap of low dimensional semiconductor structures espe-
cially in the size range of small particles corresponding
to the strong confinement regime (R/aB� 1). However,
development of a theoretical analytical model suitable for
quantitative predictions is still a partially solved problem.

a)Email: diegolourenconi@gmail.com

One of the most used theoretical models that allows a rela-
tively simple analytical relationship between the bandgap and
particle size is the much quoted Brus model.4–6 In its simplest
form, the widely known Brus equation results from an effective
mass model for spherical particles in the case of strong size
quantization. As an improvement to Efros and Efros treatment3

of the strong confinement regime, the Coulomb interaction
between the electron and hole was included by means of first
order perturbation theory. Quantum confinement effects on
ionization potentials, electron affinities, and redox potentials
were then analyzed in detail in the sense of the Brus model.
The blue shift of the absorption spectrum was also obtained
in reasonable agreement with experiment for large clusters.7

However, experimental observations carried out extensively
have revealed that in a system composed of extremely small
nanocrystals (R as small as 1–2 nm), near the so-called strong
confinement limit, the observed bandgap shift with respect to
the bulk value is much smaller than the theoretical predic-
tion.8–10 Consequently, in the size range corresponding to the
strong confinement regime, the Brus equation fails to fit the
empirical sizing curves (nanocrystal bandgap vs size) pub-
lished by several groups by combining experimental data for
different materials.11–13 In the specific case of the size dis-
tributions analyzed in Ref. 13 for various samples of ZnO
nanocrystals, the particle size obtained from the absorption
onset measurement and Brus sizing curve deviates roughly by
25% from the maximum of the corresponding transmission
electron microscopy (TEM) histogram. Such discrepancy has
been attributed mainly to the boundary constraint of the infinite
barrier model, which constitutes the underlying assumption for
the main results of Efros and Efros3 and Brus.5 In this context,
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Kayanuma and Momiji14 introduced variational calculations
of the ground state energy of an electron-hole pair system con-
fined in a microsphere by finite potential barriers. It was shown
that the effect of relaxation of the boundary constraint is quite
significant and must be taken into account to analyze the exper-
imental data properly. Other researchers15–17 adopted a more
refined method based on the finite-depth square-well effective
mass approximation and suitable for quantitative predictions.
Assuming a spherical finite potential well, electron and hole
energies can be estimated numerically by solving appropri-
ate nonlinear algebraic eigenvalue equations. Nanda et al.15

and Pellegrini et al.16 investigated systematically the applica-
tion of this approach to several semiconductor nanocrystals
embedded in different matrices and the model predictions for
wide-bandgap semiconductors turned out to be quantitatively
accurate.

In addition to the reported theoretical investigations,
empirical calibration curves have also been proposed for CdS,
CdSe, and CdTe colloidal nanocrystals providing useful rela-
tionships between the mean size of the nanocrystals and the
position of the first excitonic absorption peak.11 Such empir-
ical functions agree very well with the calculated absorp-
tion spectra using time-dependent density functional methods
for similar cadmium chalcogenides.18 A good agreement is
also found when an atomistic semiempirical pseudopotential
approach is used for calculating the size dependent exciton
transition energies of small CdSe nanocrystals.19

In this paper, a new analytical relationship between the
bandgap of a spherical semiconductor nanocrystal and its char-
acteristic size is presented as an alternative to the referred
numerical approaches and also to the Brus equation in a spe-
cific size range (R/aB� 1) where this asymptotic formula fails
to describe experimental observations (the strong confinement
limit). Relevant corrections to the lowest excited state of these
quantum confined systems were compiled in order to pro-
vide realistic sizing curves (nanocrystal bandgap vs radius).
From a simple spectroscopic analysis based on optical absorp-
tion and photoluminescence measurements and applied to
CdTe colloidal nanocrystals, particle size distributions (PSDs)
were estimated and compared directly to those obtained from
atomic force microscopy (AFM) and transmission electron
microscopy (TEM).

II. THEORY
A. Size-dependent bandgap of colloidal
semiconductor nanocrystals

Leyronas and Combescot20 derived analytical expressions
for the single particle confinement energies in a spherical
nanocrystal with finite potential barriers in order to reproduce
impressively well the numerical solutions of the characteris-
tic transcendental eigenvalue equation for any level, barrier
height, and confinement size. From them, we can propose in
the present paper the exact ground-state wave function for the
charge carriers in a spherically symmetric finite potential well
with radius R,

φvi (xi) =
1
√

2πR

1
πf (vi)j1[πf (vi)]

sin[ πR f (vi)xi]

xi
, (1)

where xi is the radial coordinate for the electron (i = e) and
the hole (i = h), j1[πf (vi)] is a first-order spherical Bessel

function with argument πf (vi), and f (vi)=
[
1 + 1

vi
+

( π
2 −1)2

vi(vi−1)

]−1

is a quantity defined in terms of the dimensionless parame-
ter vi = ( V

~2/2miR2 )1/2. This finite confining parameter relates
the barrier height V and the confinement energy of the
charge carrier i, characterized by the effective mass mi. The
infinite potential limit is reached when vi→∞. Assuming
that the individual motions of the electron and the hole are
strongly quantized in all spatial directions, in accordance
with the regime of sufficiently small nanocrystals (R/aB� 1),
the exciton ground-state wave function ψve,vh (xe, xh) can
be factorized into a simple product of the 1S single-
particle wave functions φvi (xi) so that ψve,vh (xe, xh) � φve (xe)
× φvh (xh). The energy corresponding to the first excitonic
transition or, equivalently, the bandgap of a semiconduc-
tor nanocrystal [Eg(R)] relative to the bulk value (Ebulk

g )
becomes

Eg(R) = Ebulk
g +

~2

2meR2



π

1 + 1
ve

+
( π

2 −1)2

ve(ve−1)



2

+
~2

2mhR2



π

1 + 1
vh

+
( π

2 −1)2

vh(vh−1)



2

+ ∆Ee−h(R, ve, vh, εs)

+∆Epol(R, ve, vh, ε), (2)

where the second and the third terms correspond to the con-
finement energies of the electron and of the hole, respectively,
in a finite spherical potential well. The fourth term is due to
the screened Coulomb interaction between the electron and the
hole. It depends explicitly on the nanocrystal radius (R), the
finite confining parameters for the charge carriers (ve, vh), and
the dielectric constant of the bulk semiconductor material (εs).
Treating the Coulomb interaction as a first order perturbation
to the dominant kinetic energy contribution for small radii and
making use of the Legendre polynomial addition theorem for
the 1

���
−→xe−
−→xh

���
term, we obtain

∆Ee−h(R, ve, vh, εs)

�

〈
ψve,vh (xe, xh)

�������
−

e2

εs
���
−→xe −
−→xh

���

�������
ψve,vh (xe, xh)

〉

= −
e2

εs
(I1 + I2), (3)

where

I1 =

∫
d3xh

��φvh (xh)��2
∫

dxex2
e

��φve (xe)��2

×
∑∞

n=0

1
xh

(
xe

xh

)n

Θ(xh − xe)
∫

dΩePn(cosγ) (4)

and

I2 =

∫
d3xe

��φve (xe)��2
∫

dxhx2
h

��φvh (xh)��2

×
∑∞

n=0

1
xe

(
xh

xe

)n

Θ(xe − xh)
∫

dΩhPn(cosγ). (5)
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In Eqs. (4) and (5), Θ is the usual Heaviside unit step func-
tion, Pn is the n-th order Legendre polynomial, and γ is
the angle between the position vectors −→xe and −→xh. The inte-
gral of Pn(cosγ) with respect to the solid angle element
dΩi for the electron (i = e) and the hole (i = h) van-
ishes for all n , 0: ∫ dΩiPn(cosγ) = 4πδn,0. The subse-
quent integration over the Heaviside function Θ(xi − xj) is

performed making use of the identity ∫
∞

0 Θ(xi − xj)g(xj)dxj

= ∫
xi

0 g(xj)dxj, where the subscripts i and j are used here
to represent different charge carriers and their correspond-
ing radial coordinates, and g(xj) is a general function of
the coordinate xj. All these considerations lead to the
following expression for the Coulomb interaction energy
[Eq. (3)]:

∆Ee−h(R, ve, vh, εs) � −
e2

εsR
*
,

2π−
5
2 f (vh)−1f (ve)−

3
2

j1[πf (ve)] j1[πf (vh)]
+
-

2 {
−

1
4

Si
[
2πf (ve)

]
−

1
8

Si
[
2π(f (vh) − f (ve))

]
+

1
8

Si
[
2π(f (vh) + f (ve))

]
+

1
2

f (ve)
f (vh)

[
πf (vh) − cos(πf (vh))sin(πf (vh))

]}
. (6)

The expression between braces is written in terms of the Si(x)
sine integral.

The last term in Eq. (2), ∆Epol(R, ve, vh, ε), is the surface
polarization energy that arises from the difference in dielec-
tric constants between the nanocrystal semiconductor material
(εs) and the surrounding medium (εm). As a consequence of
this dielectric mismatch, the effective Coulomb interaction
between the electron and the hole in a spherical semiconduc-
tor nanocrystal embedded in a dielectric medium exhibits an
additional term caused by the induced surface charge of the
sphere.21,22 From classical electrostatics, Brus derived a polar-
ization potential for a dielectric sphere in the field of a single
point charge within it.5 For one electron-hole pair system, such
a potential [Vpol(

−→xe,−→xh)] was expressed as a sum of the self-
energy of an electron and a hole due its own image charge
[Vs(
−→xi )] and a mutual polarization contribution coming from

the interaction of a carrier with the charge induced by the other
one [VM (−→xe,−→xh)]. Indeed,

Vpol(
−→xe,−→xh) = Vs(

−→xe) + Vs(
−→xh) + VM (−→xe,−→xh)

=
∑∞

n=0

e2αn

2R

( xe

R

)2n
+

∑∞

n=0

e2αn

2R

( xh

R

)2n

−
∑∞

n=0

e2αn

R

( xexh

R2

)n
Pn(cosγ), (7)

where αn is defined by αn ≡
(ε−1)(n+1)
εs(nε+n+1) and ε = εs/εm is the

relative dielectric constant. By assuming infinitely high confin-
ing potentials, the dielectric mismatch corrections on excitonic
energies in spherical nanocrystals almost cancel each other
out and are greatly reduced [in this situation, the contributions
from Vs(

−→xe) + Vs(
−→xh) and VM (−→xe,−→xh) to the potential energy

of the electron-hole system have close absolute values and
opposite signs]. To the best of our knowledge, the combined
effect of finite potential barriers and dielectric mismatch on
electronic and optical properties of semiconductor nanocrys-
tals has been investigated only in a few studies.23–25 In a very
recent publication,25 the dielectric correction for cubic geom-
etry and the eigenstates of the corresponding finite square
well were computed for CdTe nanocrystals considering dif-
ferent values of dielectric mismatches and barrier heights.
In the present work, in order to account for both dielec-
tric corrections and finite confining potentials in spherically
symmetric nanosystems, the electron and hole self-energies
and the mutual polarization term from the Brus polarization
potential [Eq. (7)] were averaged with the proposed exci-
ton ground-state wave function, ψve,vh (xe, xh), for a spherical
semiconductor nanocrystal with finite potential barriers, yield-
ing the following analytical expression for the energy shift
∆Epol:

∆Epol(R, ve, vh, ε) �
〈
ψve,vh (xe, xh) ���Vpol(

−→xe,−→xh)���ψve,vh (xe, xh)
〉
= −

e2

εsR

{
1

π2f (ve)f (vh)j1[πf (ve)]j1[πf (vh)]

}2

×

{(
1 −

sin
[
2πf (ve)

]
2πf (ve)

)
g(ε, vh) +

(
1 −

sin
[
2πf (vh)

]
2πf (vh)

)
g(ε, ve)

}
, (8)

where g(ε, vi)=−
∑∞

n=1
(ε−1)(n+1)
(nε+n+1) ∫

1
0 dx x2nsin2 [

πf (vi)x
]
. A

sufficiently high number of terms must be considered in this
expansion in order to ensure convergence (n = 14 000 in our
calculations).

Once∆Ee−h(R, ve, vh, εs) and∆Epol(R, ve, vh, ε) have been
determined from Eqs. (6) and (8), respectively, the bandgap

Eg(R) of a semiconductor nanocrystal with respect to the bulk
value Ebulk

g can be calculated from Eq. (2). For a given system,
according to Pellegrini16 and Nanda,15 the barrier height V
entering in the definition of the confining parameters ve and vh

can be approximated by the difference between the bandgaps
of the nanocrystal semiconductor material Ebulk

g and of the
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surrounding medium Emedium
g so that V =

[
Emedium

g − Ebulk
g

]
/2.

The confining potentials for the electron and the hole are
assumed to be identical.

At this point, it is worth noting that in the limit of infi-
nite confining potentials (ve,h →∞ and f (ve,h)→ 1), Eqs. (6)
and (8) return ∆Ee−h → − 4

π

{
− 1

4 Si(2π) + 1
8 Si(4π) + π

2

}
e2

εsR

= −1.786 e2

εsR and ∆Epol → −
2e2

εsR g(ε, vi → ∞), respectively. In
this limit, the confinement energies [second and third terms
in Eq. (2)] exhibit an inverse quadratic dependence on the
nanocrystal radius. Therefore, the main result of the well-
known Brus model5 is recovered from the asymptotic form
of Eq. (2),

Eg � Ebulk
g +

~2π2

2µR2
− 1.786

e2

εsR
+ β

e2

εsR
, (9)

where β = −2g(ε, vi → ∞) = −2
∑∞

n=1
(ε−1)(n+1)
(nε+n+1) ∫

1
0 dx x2n

sin2(πx) and µ is the reduced electron-hole mass.

B. Determination of the particle size distribution
of colloidal semiconductor nanocrystals

In real systems, regardless the adopted synthesis meth-
ods, one has to take into account that there is always a certain
distribution of nanocrystal sizes P(R) around a certain mean
value. In this context, well established colloidal chemistry
approaches combined with post-preparative size-selective pre-
cipitation techniques have been able to furnish high quality
nanocrystals with size dispersions as narrow as 5%.26,27 Since
the bandgap of a single semiconductor nanocrystal depends
strongly on its radius [see Eqs. (2) and (9)], a certain size dis-
tribution leads necessarily to a distribution of bandgaps and
introduces a pronounced inhomogeneous broadening of the
originally discrete resonances in the observed optical spectra.
Considering specifically the effect of size nonuniformity on the
photoluminescence spectra of semiconductor nanocrystals, the
ensemble emission intensity (on the λ-wavelength scale) can
be simulated as13,28–30

IPL(λ) =
∫ ∞

0
Nc(R)α(R)

ABS(λexc)I (R)
PL (λ)P(R)dR, (10)

where Nc(R) is the size-dependent number of carriers available
to take part in optical transitions, α(R)

ABS(λexc) and I (R)
PL (λ) are the

linear absorption coefficient at the excitation wavelength λexc

and the emission intensity for a single nanocrystal of radius
R, respectively, P(R) is the probability distribution function
of radii. Assuming that P(R) can be represented either by a
normal or by a log-normal dispersion, Eq. (10) has furnished a
good fit to experimental photoluminescence data especially for
silicon nanoclusters over the size range 2–8 nm.28,29 Since Nc

scales with the nanocrystal volume V (the number of carriers
increases as the size increases) and α is determined by the total
interband oscillator strength per unit volume fosc(R)

V , Eq. (10)
can be approximated by

IPL(λ) �
∫ ∞

0
fosc(R)I (R)

PL (λ)P(R)dR

= fosc(R)P(R)
1

λ ′(R)

∫
I (R)
PL (λ)dλ. (11)

In Eq. (11), the fluorescence line shape for a fixed radius,
I (R)
PL (λ), relates the distributions IPL(λ) and P(R) whose abscis-

sas are connected by the relation λ(R)= hc
Eg(R) so that dλ

= d
[

hc
Eg(R)

]
= λ ′(R)dR, thus allowing the change in the vari-

able of integration. h is the Planck’s constant, c is the speed
of light, and Eg(R) is the nanocrystal bandgap written explic-
itly as a function of the radius R, for a given set of descriptive
parameters, as defined in Eqs. (2) and (9). Considering a nor-
malized spectral line shape (typically, a Gaussian profile),
∫ I (R)

PL (λ)dλ = 1, the experimentally measured IPL(λ) can be
converted into a size distribution P(R) through the relation

P(R) �
1

fosc(R)

[
dλ
dR
× IPL(λ)

]

λ= hc
Eg(R)

�
1
V

[
dλ
dR
× IPL(λ)

]

λ= hc
Eg(R)

. (12)

In Eq. (12), the total interband oscillator strength, f osc(R), is
obtained by integrating over all the optically allowed exci-
ton states. As discussed in Refs. 12 and 31, the magnitude of
f osc(R) is determined by the total interband matrix element
pcv between the valence-band top and the conduction-band
bottom and also by the number of unit cells contained in the
nanocrystal. Since pcv is defined in terms of the Bloch wave
functions of the bulk material, accounting for semiconductor’s
composition and crystal lattice, which do not depend on the
nanocrystal size, it can be expected that f osc(R) scales linearly
with the nanocrystal volume V. It is worth pointing out that for
small nanocrystals where confinement effects are significant
and at relatively low temperatures, the first excited eigenstate
is situated at much higher energies than the thermal energy

kBT. In this picture, the oscillator strengths of all
(

R
aB

)3
levels

are mainly concentrated on the lowest exciton state32,33 so that
the overall f osc(R) is essentially determined by f 1(R). In such
a situation, the major contribution to luminescence is from
radiative recombination of confined ground-state excitons, the
thermal broadening (<50 meV at room temperature) being
negligible in comparison to the observed spectral linewidths.33

As a consequence, photons emitted at a given energy arise
basically from nanocrystals whose lowest excited state corre-
sponds to that energy. Therefore, according to Eq. (12), for a

given experimental photoluminescence spectrum,
IPL(λ= hc

Eg(R) )

V
represents approximately the volume fraction of nanocrystals
with energy bandgap Eg(R) that is converted into a particle
size distribution P(R) through the factor

[
dλ
dR

]
λ= hc

Eg(R)
.

Alternatively, the size distribution can also be obtained
from analysis of the inhomogeneous broadening observed in
the optical absorption spectra of semiconductor nanocrystals.
Pesika et al.34,35 estimated P(R) from the local slope of the
absorption spectrum A(λ) in the vicinity of the onset through
the relation

P(R) � −
1
V

dA
dR
= −

1
V

[
dA
dλ
×

dλ
dR

]

λ= hc
Eg(R)

. (13)

Using the proposed bandgap equation [Eq. (2)], the results
from Eq. (13) will be compared to those obtained from the
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photoluminescence-based size distribution model [Eq. (12)].
As will be shown in Sec. IV, our analytical expression for the
nanocrystal bandgap can be used to improve dramatically the
size distribution predictions resulting from the Brus model
[Eq. (9)], enabling a direct comparison with experimental
data.

The here presented theoretical models are suitable for
describing systems composed of very small semiconductor
nanocrystals belonging to the strong confinement limit. As
discussed in Sec. II A, in this situation, the nanocrystal
radius is much smaller than the exciton Bohr radius (R� aB),
which allows one to treat the effective electrostatic interac-
tion between charge carriers as a perturbation of the dominant
kinetic energy contribution.21 The bandgap relation [Eq. (2)]
required for the size distribution computation [Eqs. (12) and
(13)] was obtained in this specific size range, thus establish-
ing a limit for the applicability of the developed analysis.
In particular for cadmium telluride (CdTe), the semiconduc-
tor material we are interested in, the exciton Bohr radius is
aB = 7.5 nm.36

III. EXPERIMENT
A. Preparation of the nanocrystals

The nanocrystals were synthesized using the colloidal
chemistry approach in which the particle growth occurs in a
solution of chemical reagents containing the metallic cation
and the anion sources such as a cadmium salt and a suit-
able chalcogenide precursor. In this wet chemical preparation,
organic stabilizing agents are used in order to inhibit the
excessive growth of the evolving particles to a bulk macro-
crystalline phase. In the present work, two synthetic routes
were adopted. Initially, CdTe nanocrystals were produced fol-
lowing a two-step procedure in accordance with Refs. 37 and
38. In the first step, NaBH4 (3.56 mmol) and tellurium pow-
der (0.59 mmol) were mixed with 10 ml of deionized water in
a 25 ml three-necked flask sealed with rubber plugs. Under
intense argon flow, the mixture was stirred gently at room
temperature and about 3 h later, a clear purple solution was
observed. The generated NaHTe precursor was then trans-
ferred carefully into a closed reaction vessel with 100 ml of
degassed water. The inert atmosphere was again necessary to
store the fresh NaHTe properly and to avoid oxidation. In
the second step, 40 ml of the freshly prepared NaHTe solu-
tion was injected, under an intense argon flow and vigorous
stirring, in a three-necked flask fitted with rubber septa and
containing CdCl2 (1.11 mmol), deionized water (125 ml), and
thioglycolic acid (TGA) (2.88 mmol). The pH value of the cad-
mium precursor solution was adjusted to 11.1 with 1M NaOH
solution before injection of NaHTe. Then, the reaction mix-
ture was heated to 100 ◦C (reflux temperature) for 1 h, and a
sample was taken for further characterization and theoretical
analysis.

Concerning the characterization procedure, all opti-
cal measurements were performed at room temperature.
Ultraviolet-visible (UV-vis) spectroscopy was carried out with
a Shimadzu UV-Vis-1501 spectrophotometer. Photolumines-
cence was measured using a modular system consisting of a
378 nm light-emitting diode laser (COHERENT CUBE) as the

excitation source and an Ocean Optics USB 4000 spectrome-
ter for collecting the PL emission. Atomic force microscopy
(AFM) analysis for the determination of particle size distri-
bution was conducted using an NT-MDT-NTEGRA Prima
multifunctional scanning probe microscope in a tapping mode.
Noncontact “golden” silicon cantilevers (NSG10 series/NT-
MDT) with a typical resonance frequency of 240 kHz and
a spring constant of 11.8 N/m were used. Once the sample
was scanned, the particle height distribution was assessed
using SPIPTM—analytical software for microscopy.39 For a
nearly spherical shape, which is a reasonable assumption for
nanocrystals prepared by the described colloidal chemistry
methods, the height measurement corresponds to the size or
diameter of the nanocrystal.40 With respect to sample prepara-
tion, a micropipette was used to disperse two droplets (≈10 µl,
each one) of the undiluted nanocrystal solution on a freshly
cleaved mica substrate. After 15 min, the substrate containing
the deposited nanocrystal solution was placed in a Petri dish
where a careful immersion in deionized water at room tem-
perature took place for 10 min. Then, the water was removed
and the Petri dish/sample system was slowly dried in a muffle
furnace at 80 ◦C for about one day. After that, the sample was
ready for AFM imaging.

CdTe nanocrystals were also produced following a one-
pot approach in accordance with Ref. 41. Briefly, 0.43 mmol
CdCl2.H2O was diluted in 80 ml of ultrapure water in a 100 ml
beaker. L-glutathione (GSH) (0.52 mmol) was added while
stirring, followed by adjusting the pH to 10.0 with a solution
of 1.0 mol l�1 of NaOH. Next, this solution was added to a
100 ml three-neck flask with a reflux column and a thermo-
couple coupled with a thermal heater (Cole & Parmer®) in
order to control the temperature. Then, 0.04 mmol Na2TeO3

and 1.0 mmol NaBH4 were added to the solution, followed by
reflux at 100 ◦C for 1 h. After that, the sample was purified by
adding acetone for precipitation of the nanoparticles.

Ultraviolet-visible (UV-vis) spectrum was registered on
a diode array UV-2550 Shimadzu spectrometer. Fluorescence
spectrum (PL) was obtained at room temperature, using a Shi-
madzu RF-5301 PC spectrofluorophotometer equipped with
a xenon lamp of 150 W. Transmission electron microscopy
(TEM) was performed on a JEM 2100 FEG-TEM operating at
200 kV (LNNano- Brazilian Nanotechnology National Lab-
oratory). Suspensions of CdTe QDs samples were dispersed
in 300-mesh Lacey Formvar with an ultrathin carbon film,
which was previously treated by argon plasma to make it
hydrophilic. Several images were registered and the size of
the nanoparticles was measured using the ImageJ software.

The characterization procedures were described sepa-
rately for each sample since the reported syntheses were
performed in two different research groups.

IV. RESULTS AND DISCUSSION

Figure 1 displays typical room temperature absorp-
tion and photoluminescence spectra of two colloidal CdTe
nanocrystal samples obtained from different synthetic meth-
ods as described in Sec. III: a two-step procedure that uses
thioglycolic acid as a stabilizer agent (TGA-capped CdTe
nanocrystals) and a one-pot approach based on L-glutathione
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FIG. 1. UV-visible absorption and pho-
toluminescence spectra of as-prepared
CdTe colloidal nanocrystals capped
with (a) thioglycolic acid (TGA) and
(b) L-glutathione (GSH). Circles and
squares represent fits to absorbance
(dashed curves) and PL (solid lines)
experimental data, respectively.

(GSH-capped CdTe nanocrystals). In Figs. 1(a) and 1(b), the
solid and dashed curves correspond to the measured emission
and absorption intensities, respectively, for both CdTe/TGA
and CdTe/GSH nanocrystal samples. The fits to experimental
data comprise, for each sample, the entire PL band (squares)
and also the absorption edge (circles), that is, the region
extracted from the absorbance spectrum (A(λ)) ranging from
the onset to the point where d2A/dλ2 = 0. The energy cor-
responding to the absorption onset can be obtained by plot-
ting the linear function (Ahν)2 =C(hν − Eonset) and finding its
intercept (A is the absorbance, hν is the photon energy, and
C is a constant). Appropriate fitting functions were chosen
in order to reproduce accurately the available experimen-
tal data. The data enclosed in the absorbance edge regions
were then fitted to four-parameter log-normal functions. PL
experimental points were, in turn, fitted to an exponentially
modified Gaussian function (CdTe/TGA sample) and to an
asymmetric double sigmoidal function (CdTe/GSH sample).
From these fitting functions, the measured photoluminescence
and absorption intensities (IPL(λ) and A(λ) in Eqs. (12) and
(13), respectively) are written explicitly as functions of λ.
Once the theoretical sizing curve λ = λ(R)= hc

Eg(R) is deter-
mined, the size distribution curves P(R) can be estimated for
the analyzed samples. The two different approaches used for
the nanocrystal bandgap Eg(R) are represented by Eqs. (2)
and (9).

In what follows, our theoretical results are presented and
compared to the predictions of the Brus model [Eq. (9)].
Figure 2(a) shows the size dependent bandgap Eg(R) esti-
mated from Eqs. (2), (6), and (8) for CdTe colloidal
nanocrystals in aqueous solution (solid line). The calcula-
tions were performed with the parameters Ebulk

g = 1.475 eV,

me = 0.135m0, mh = 1.139m0 (m0 is the free electron mass),
and εs = εCdTe = 10.4. Since the analyzed nanocrystal sam-
ples were produced by means of purely aqueous medium
routes (Sec. III), the following values of dielectric mismatch
and potential barrier height were used: ε = εCdTe/εwater = 0.13
and V =

[
E(water)

g − E(CdTe)
g

]
/2= 2.7125 eV; E(water)

g = 6.9 eV
is the experimental bandgap of liquid water. With the the-
oretical considerations proposed here, a strong reduction of
the nanocrystal bandgap values predicted by the Brus model
[Eq. (9), dashed curve] is observed in a small size range
(R < 2.5 nm). Furthermore, as a consequence of the incom-
plete confinement of the carriers (due to a finite V ), a clearly
noticeable inflexion point in the Eg(R) continuous curve indi-
cates an onset for the vanishing of the bound states in the
finite spherically symmetric well (for R ≤ 0.72 nm, the exciton
is no longer confined). In Fig. 2(b), the individual contribu-
tions of the expectation values of the kinetic energy [〈K〉,
second and third terms in Eq. (2)], the Coulomb energy
[〈C〉, Eq. (6)], and the polarization energy [〈P〉, Eq. (8)] to
the total Eg(R) curve are presented separately (solid lines,
our results) and compared to the corresponding predictions
of the Brus model (dashed lines). The arrows indicate how
〈K〉, 〈C〉, and 〈P〉 change after the implementation of the ana-
lytical corrections derived in Sec. II. The reduction in the
dominant kinetic energy contribution becomes quite large in
the strong confinement region, and an attenuated size depen-
dence is verified for 〈K〉: as the nanocrystal size decreases,
〈K〉 increases as R�1.4 instead of R�2.0 (the typical quantum
localization term in Eq. (9) scales with the square of the
inverse radius). On the other hand, the contribution of 〈P〉
to Eg(R) is greatly enhanced for small sizes (inset), which
is mainly attributed to a significant spreading of the electron

FIG. 2. (a) Calculated bandgap Eg(R)
for a CdTe colloidal nanocrystal in aque-
ous solution through Eq. (2) (solid line)
and from the Brus model [Eq. (9),
dashed line]. (b) Decomposition of both
Eg(R) curves into 〈K〉, 〈C〉, and 〈P〉 con-
tributions (kinetic, Coulomb, and polar-
ization energies). The arrows connect
the quantities calculated in the infinite
barrier model [Eq. (9), dashed lines] and
in our theoretical approach [Eqs. (2),
(6), and (8), solid lines].
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and hole probability densities outside the nanocrystal by relax-
ing the hard-wall boundary condition, as discussed in Ref. 24.
In fact, while polarization energy is supposed to shift Eg(R)
to lower energies as R�1.0 [see Eq. (9)], a stronger size depen-
dence was obtained: in our calculations, 〈P〉 scales with R�2.6.
Therefore, at small values of R, 〈P〉 becomes much more
negative than expected from the infinite barrier model in
which polarization effects seem to be almost suppressed. It
can also be observed that the magnitude of the Coulomb
energy 〈C〉 in the observed size range is not significantly
affected by the existence of a finite confinement potential
(inset), which is partly due to the long-range character of
the Coulomb interaction. In particular for R = 0.72 nm, 〈K〉
changes from 6.01 eV to 2.55 eV, 〈C〉 changes from �0.34 eV
to �0.37 eV, 〈P〉 changes from �0.09 eV to �1.23 eV, and
the calculated bandgap is drastically reduced from 7.14 eV to
2.43 eV.

In Fig. 3(a), the particle size distributions (PSDs) obtained
from the analysis of both the emission and the absorption
spectra for the produced CdTe/TGA nanocrystal sample [Fig.
1(a)] are superimposed on the distribution obtained from
the analysis of the displayed AFM image [Fig. 3(b)]. The
photoluminescence-based PSD (solid line) calculated directly
from Eq. (12) and the proposed relation for Eg(R) [Eq. (2)]
exhibits a clear asymmetric shape with a most probable radius
of 0.82 nm in close agreement with the AFM histogram (white
bars with a maximum height centered at 0.81 nm). Such agree-
ment arises from the theoretical considerations that led to a
general expression for the nanocrystal bandgap in the form of
Eq. (2). Even for nanocrystals embedded in liquid mixtures,
the incompleteness of the confinement must be considered as
a relevant aspect that affects the different energetic contri-
butions (kinetic, Coulomb, and polarization energies) to the
effective bandgap which, in turn, is greatly reduced in very
small nanocrystals. For example, the bandgap correspond-
ing to R = 0.82 nm is reduced from 5.8 eV to 2.4 eV when
the corrections enclosed in each term of Eq. (2) are imple-
mented. As discussed in Sec. II, in a situation in which the
dimensionless confining parameters vi=e,h are considered ide-
ally high, all terms of the Brus equation are asymptotically
recovered. Consequently, the mechanism of bandgap reduc-
tion presented in Fig. 2 is no longer assessed, and the PSD will
be dislocated to larger radii. The inset of Fig. 3(a) shows the
photoluminescence-based PSD [Eq. (12)], using now the Brus

approximation to Eg(R) [see Eq. (9)]. The most probable radius
is, in fact, strongly overestimated (PSD maximum centered at
1.64 nm). Making use of our bandgap relation again [Eq. (2)],
the PSD corresponding to the dashed curve was calculated
from Eq. (12), as before, but a different approach was used
for the oscillator strength of the lowest exciton state, f 1(R).
Since we are dealing with extremely small particles, R/aB

� 0.1 for the most probable radius, it seems reasonable that
f 1(R) can also be represented by an asymptotic limit analogous
to that proposed by Kayanuma:31 for R/aB→ 0, the normalized
oscillator strength of the ground state per nanocrystal tends
to f n

1 (R) = π |θ(ve, vh)|2, where θ(ve, vh) = ∫ φve (x)φvh (x)d3x
is the overlap integral calculated from wave function (1)
(see Sec. II). For infinite confining potentials (ve,h→∞), the
classical Kayanuma result for the strong confinement limit is
recovered, that is, f n

1 (R) → π. As before, the calculated PSD
presents an accurate estimate for the most probable radius.
Furthermore, the observed asymmetric shape becomes notice-
ably broader to the right of the maximum in clear agreement
with the AFM statistical data. Finally, the PSD obtained from
the analysis of the absorbance spectrum in Fig. 1(a) is rep-
resented by the gray filled curve. This is the result from the
implementation of the Pesika model34,35 [Eq. (13)] combined
with our bandgap equation [Eq. (2)]. Although the absorption-
based PSD furnishes a good estimate for the most probable
radius (0.79 nm), the distribution is highly symmetrical and
much sharper than those obtained from the analysis of both
the AFM image and the photoluminescence spectrum. Such
discrepancy is inherent to the basic assumption underlying
Eq. (13). If the particle size distribution is sufficiently large,
then the shape of the absorbance spectrum near the onset is
dominated by the particle size distribution. In this situation, the
analysis of the absorption edge led to better results for CdSe
colloidal nanocrystals produced at prolonged reaction times
after a natural broadening of the absorption bands with time.42

In an opposite situation, our CdTe/TGA nanocrystal sample
(corresponding to a short reaction time) exhibits a relatively
narrow well-resolved absorption peak, which limits the analy-
sis of size distributions from the absorption spectrum through
Eq. (13).

In Fig. 4(a), similar analyses were performed for the pro-
duced CdTe/GSH nanocrystal sample using the emission and
the absorption spectra displayed in Fig. 1(b). The PL-based
PSD (solid line) calculated from Eqs. (2) and (12) exhibits an

FIG. 3. (a) Size distributions of
CdTe/TGA nanocrystals obtained
from AFM histogram (white bars),
absorption edge with Eg(R) given
by Eq. (2) (gray filled curve), PL
spectrum with Eg(R) given by Eq. (2)
(solid line), PL spectrum with Eg(R)
given by Eq. (2) and making use
of an asymptotic oscillator strength
term (dashed curve) and PL spectrum
with the Brus approximation to Eg(R)
[Eq. (9), inset]. (b) AFM image of the
CdTe/TGA nanocrystal sample (height
distribution).



154102-8 Ferreira et al. J. Chem. Phys. 147, 154102 (2017)

FIG. 4. (a) Size distributions of
CdTe/GSH nanocrystals obtained
from TEM histogram (white bars),
absorption edge with Eg(R) given by
Eq. (2) (gray filled curve), PL spectrum
with Eg(R) given by Eq. (2) (solid
line), and PL spectrum with the Brus
approximation to Eg(R) [Eq. (9), inset].
(b) TEM image of the CdTe/GSH
nanocrystal sample.

asymmetric shape in close agreement with the size distribu-
tion histogram (white bars) obtained from the corresponding
TEM image [Fig. 4(b)] except for the region in the vicinity of
R = 1.0 nm where experimental results are noticeably under-
estimated. This may be the result of the difficulty in obtain-
ing precise measurements of smaller particles from TEM
images.42 Since we are dealing with a system characterized
by a considerable size dispersion (27%), this may also indi-
cate that a post-preparative procedure such as the size selective
precipitation technique26,27 should be used conveniently to
produce new samples with narrower size distributions before
the PSD computation. In the infinite potential limit vi → ∞,
the calculated distribution centered at 1.25 nm (solid line)
shifts to 1.98 nm (inset, the Brus model) far from the TEM
statistical data, as a consequence of the use of the asymp-
totic formula (9) for the nanocrystal bandgap. The gray filled
curve represents an absorbance-based PSD with an approx-
imately symmetric shape computed from Eq. (13) and our
expression for Eg(R) [Eq. (2)]. This distribution (centered at
1.21 nm) is much sharper than that obtained from the anal-
ysis of the photoluminescence spectrum and TEM data for
the same reasons discussed previously. Since the size distribu-
tion of the CdTe/GSH sample is dislocated substantially to the
right of the distribution of the CdTe/TGA sample, the previ-
ously investigated asymptotic limit for the oscillator strength
turned out to be unsuitable to describe the larger particles in
the GSH-capped nanocrystal sample. In fact, the CdTe/GSH
sample exhibits broader absorption and emission bands situ-
ated at much longer wavelengths than the CdTe/TGA sample
(Fig. 1).

The influence of different effective mass values on PSD
computation was analyzed in terms of the anisotropy effect in
zinc-blende (bulk) semiconductor materials. Such an effect is
more pronounced for the heavy-hole band which has a strongly
directional-dependent effective mass, with a larger mass along
the [111] direction than along the [110] and [100] directions.43

Using a theoretical methodology developed for the first author
of the present paper44 and applied here to the binary semicon-
ductor CdTe, the electron and the heavy-hole effective masses
along these three directions were determined from ab initio
total energy calculations based on the density functional the-
ory.45 Then, mean effective masses were obtained by averaging
over the directions. In Figs. 2–4, all calculations were per-
formed with the [111] effective masses that led to the most
accurate descriptions of the measured distributions. It is worth

pointing out that in the observed size range of the analyzed
samples, corresponding to the strong confinement regime, the
agreement between theoretical predictions and experimental
data was little affected when the mean effective masses were
used in the calculations. Indeed, the PSDs estimated from these
two sets of parameters ([111] effective masses and mean effec-
tive masses) are quite similar and exhibit very close values for
the most probable sizes. However, when the effective masses
along the [110] and [100] directions were used, the most prob-
able sizes increased significantly with respect to the values cor-
responding to the first two sets of parameters, compromising
the comparison with experimental data. These considerations
are equally valid for several zinc-blende binary semiconduc-
tor materials (CdS, CdSe, ZnS, ZnTe, ZnTe, and others) and
must be taken into account in order to determine the size distri-
bution of ensembles of nanocrystals properly. For the sake of
completeness, the calculated electron and heavy-hole effective
masses are listed here: m[100]

e = 0.131m0, m[100]
hh = 0.506m0,

m[110]
e = 0.133m0, m[110]

hh = 0.520m0, m[111]
e = 0.135m0, m[111]

hh
= 1.139m0, mMean

e = 0.133m0, mMean
hh = 0.825m0.

In order to summarize the main ideas proposed in this
paper, a schematic diagram showing our general approach to
size distribution determination is presented in Fig. 5 (steps 1

FIG. 5. Schematic diagram showing in a few steps (1 to 7) the method
employed to determine the particle size distribution through spectroscopic
data.
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to 7). For a particular system of semiconductor nanocrystals
embedded in a specific medium, a set of descriptive parame-
ters is initially defined (1): bandgap values of the bulk semi-
conductor material (Ebulk

g ) and of the surrounding medium

(Emedium
g ), dielectric mismatch (ε), effective masses of the con-

fined charge carriers (me, mh), and barrier height (V). These
initial parameters are used to calculate the nanocrystal bandgap
(2) which, in turn, allows one to convert PL [IPL(λ)] and
absorbance [A(λ)] data into size distribution curves (3). IPL(λ)
and A(λ) are obtained from optical measurements previously
performed on suspensions of as-prepared colloidal nanocrys-
tals (4 and 5). Subsequent AFM/TEM characterization (6)
yields the particle size distribution histogram, enabling a direct
comparison with theoretical predictions (7).

V. CONCLUSIONS

In the present work, we have calculated the size-dependent
bandgap of colloidal semiconductor nanocrystals from an
extensive revision of the main theoretical contributions to the
understanding of this well-known quantum confinement effect.
By considering the exact wave function for the charge carri-
ers confined in a finite spherical potential well, the relevance
of the incompleteness of the confinement can be quantified.
Once finite confining potentials are considered, the expecta-
tion values of the kinetic energy, the electron-hole Coulomb
interaction, and the polarization energy are calculated properly
leading to a dramatic reduction of the nanocrystal bandgap.
Consequently, the so-called inadequacy of the effective mass
approximation for small nanocrystal sizes is overcome. In fact,
the size distributions obtained from the analysis of the photo-
luminescence spectrum together with the proposed bandgap
equation are directly comparable to the presented AFM and
TEM data. Precise estimates for the most probable radius were
provided as well as relatively broad and asymmetric shapes
in close resemblance to the measured distributions. On the
other hand, the particle size distributions obtained from the
most common analysis of the absorbance edge turned out to
be almost symmetrical and much narrower than the measured
distributions as already discussed in other publications. The
methodology presented is this paper for bandgap calculation
and particle size determination can be easily implemented and
extended to other systems of semiconductor nanocrystals. It
can be used as a complementary tool for the characterization
of ensembles of nanocrystals produced from different syn-
thetic approaches. Finally, the possibility of recovering the
size distribution from spectroscopic experiments can be used
to clarify the growth kinetics of colloidal nanocrystals since
the temporal evolution of optical spectra is easily monitored
during a typical growth experiment. The growth kinetics of
TGA-capped CdTe nanocrystals was completely described by
the present authors in the sense of the classical crystallization
theories by employing this methodology. These new results
will be shown in a forthcoming publication.
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