135 research outputs found

    Thermal Conversion of Guanylurea Dicyanamide into Graphitic Carbon Nitride via Prototype CNx Precursors

    Get PDF
    Guanylurea dicyanamide, [(H2N)C(-O)NHC(NH2)2][N(CN)2], has been synthesized by ion exchange reaction in aqueous solution and structurally characterized by single-crystal X-ray diffraction (C2/c, a = 2249.0(5) pm, b = 483.9(1) pm, c = 1382.4(3) pm, β = 99.49(3)°, V = 1483.8(5) × 106 pm3, T = 130 K). The thermal behavior of the molecular salt has been studied by thermal analysis, temperature-programmed X-ray powder diffraction, FTIR spectroscopy, and mass spectrometry between room temperature and 823 K. The results were interpreted on a molecular level in terms of a sequence of thermally induced addition, cyclization, and elimination reactions. As a consequence, melamine (2,4,6-triamino-1,3,5-triazine) is formed with concomitant loss of HNCO. Further condensation of melamine yields the prototypic CNx precursor melem (2,6,10-triamino-s-heptazine, C6N7(NH2)3), which alongside varying amounts of directly formed CNxHy material transforms into layered CNxHy phases without significant integration of oxygen into the core framework owing to the evaporation of HNCO. Thus, further evidence can be added to melamine and its condensation product melem acting as “key intermediates” in the synthetic pathway toward graphitic CNxHy materials, whose exact constitution is still a point at issue. Due to the characteristic formation process and hydrogen content a close relationship with the polymer melon is evident. In particular, the thermal transformation of guanylurea dicyanamide clearly demonstrates that the formation of volatile compounds such as HNCO during thermal decomposition may render a large variety of previously not considered molecular compounds suitable CNx precursors despite the presence of oxygen in the starting material

    Mortality Prediction after the First Year of Kidney Transplantation: An Observational Study on Two European Cohorts.

    Get PDF
    After the first year post transplantation, prognostic mortality scores in kidney transplant recipients can be useful for personalizing medical management. We developed a new prognostic score based on 5 parameters and computable at 1-year post transplantation. The outcome was the time between the first anniversary of the transplantation and the patient's death with a functioning graft. Afterwards, we appraised the prognostic capacities of this score by estimating time-dependent Receiver Operating Characteristic (ROC) curves from two prospective and multicentric European cohorts: the DIVAT (Données Informatisées et VAlidées en Transplantation) cohort composed of patients transplanted between 2000 and 2012 in 6 French centers; and the STCS (Swiss Transplant Cohort Study) cohort composed of patients transplanted between 2008 and 2012 in 6 Swiss centers. We also compared the results with those of two existing scoring systems: one from Spain (Hernandez et al.) and one from the United States (the Recipient Risk Score, RRS, Baskin-Bey et al.). From the DIVAT validation cohort and for a prognostic time at 10 years, the new prognostic score (AUC = 0.78, 95%CI = [0.69, 0.85]) seemed to present significantly higher prognostic capacities than the scoring system proposed by Hernandez et al. (p = 0.04) and tended to perform better than the initial RRS (p = 0.10). By using the Swiss cohort, the RRS and the the new prognostic score had comparable prognostic capacities at 4 years (AUC = 0.77 and 0.76 respectively, p = 0.31). In addition to the current available scores related to the risk to return in dialysis, we recommend to further study the use of the score we propose or the RRS for a more efficient personalized follow-up of kidney transplant recipients

    Usefulness of electroanatomical mapping during transseptal endocardial left ventricular lead implantation

    Get PDF
    AimFailure rate to implant left ventricular (LV) lead transvenously is 4-8% in cardiac resynchronization therapy (CRT) patients. Epicardial lead placement is an alternative method and if not applicable case reports and small series showed the feasibility of endocardial LV lead implantation. Electroanatomical mapping might be a useful tool to guide this procedure.Methods and resultsFour patients had undergone endocardial LV lead implantation after unsuccessful transvenous implantation or epicardial LV lead dysfunction using the transseptal approach. Electroanatomical mapping was used to mark the location of the transseptal puncture. This location point guided the mapping catheter from the subclavian access and facilitated positioning of the LV lead at the adjacent latest activation area of the left ventricle detected by activation mapping. Endocardial active fixation LV leads were successfully implanted in all patients with stable electrical parameters immediately after implantation and over a mean follow-up of 18.3 months (lead impedance 520 +/- 177 vs. 439 +/- 119 Omega and pacing threshold 0.8 +/- 0.2 V, 0.5 ms vs. 0.6 +/- 0.1 V, 0.5 ms, respectively). Patients were maintained on anticoagulation therapy with a target international normalized ratio of 3.5-4.5 and did not show any thromboembolic, haemorrhagic events, or infection. Echocardiography showed significant improvement of LV systolic function with marked improvement of the functional status.ConclusionsElectroanatomical mapping is a useful technical tool to guide endocardial LV lead implantation. It helps to identify the location of the transseptal puncture and the use of activation mapping might facilitate location of the optimal lead positions during CRT

    Induction by transforming growth factor-β1 of epithelial to mesenchymal transition is a rare event in vitro

    Get PDF
    INTRODUCTION: Transforming growth factor (TGF)-β1 is proposed to inhibit the growth of epithelial cells in early tumorigenesis, and to promote tumor cell motility and invasion in the later stages of carcinogenesis through the induction of an epithelial to mesenchymal transition (EMT). EMT is a multistep process that is characterized by changes in cell morphology and dissociation of cell–cell contacts. Although there is growing interest in TGF-β1-mediated EMT, the phenotype is limited to only a few murine cell lines and mouse models. METHODS: To identify alternative cell systems in which to study TGF-β1-induced EMT, 18 human and mouse established cell lines and cultures of two human primary epithelial cell types were screened for TGF-β1-induced EMT by analysis of cell morphology, and localization of zonula occludens-1, E-cadherin, and F-actin. Sensitivity to TGF-β1 was also determined by [(3)H]thymidine incorporation, flow cytometry, phosphorylation of Smad2, and total levels of Smad2 and Smad3 in these cell lines and in six additional cancer cell lines. RESULTS: TGF-β1 inhibited the growth of most nontransformed cells screened, but many of the cancer cell lines were insensitive to the growth inhibitory effects of TGF-β1. In contrast, TGF-β1 induced Smad2 phosphorylation in the majority of cell lines, including cell lines resistant to TGF-β1-mediated cell cycle arrest. Of the cell lines screened only two underwent TGF-β1-induced EMT. CONCLUSION: The results presented herein show that, although many cancer cell lines have lost sensitivity to the growth inhibitory effect of TGF-β1, most show evidence of TGF-β1 signal transduction, but only a few cell lines undergo TGF-β1-mediated EMT

    Protection from ultraviolet damage and photocarcinogenesis by vitamin d compounds

    Get PDF
    © Springer Nature Switzerland AG 2020. Exposure of skin cells to UV radiation results in DNA damage, which if inadequately repaired, may cause mutations. UV-induced DNA damage and reactive oxygen and nitrogen species also cause local and systemic suppression of the adaptive immune system. Together, these changes underpin the development of skin tumours. The hormone derived from vitamin D, calcitriol (1,25-dihydroxyvitamin D3) and other related compounds, working via the vitamin D receptor and at least in part through endoplasmic reticulum protein 57 (ERp57), reduce cyclobutane pyrimidine dimers and oxidative DNA damage in keratinocytes and other skin cell types after UV. Calcitriol and related compounds enhance DNA repair in keratinocytes, in part through decreased reactive oxygen species, increased p53 expression and/or activation, increased repair proteins and increased energy availability in the cell when calcitriol is present after UV exposure. There is mitochondrial damage in keratinocytes after UV. In the presence of calcitriol, but not vehicle, glycolysis is increased after UV, along with increased energy-conserving autophagy and changes consistent with enhanced mitophagy. Reduced DNA damage and reduced ROS/RNS should help reduce UV-induced immune suppression. Reduced UV immune suppression is observed after topical treatment with calcitriol and related compounds in hairless mice. These protective effects of calcitriol and related compounds presumably contribute to the observed reduction in skin tumour formation in mice after chronic exposure to UV followed by topical post-irradiation treatment with calcitriol and some, though not all, related compounds

    Cell-associated HIV RNA: a dynamic biomarker of viral persistence

    Get PDF

    Nurses' perceptions of aids and obstacles to the provision of optimal end of life care in ICU

    Get PDF
    Contains fulltext : 172380.pdf (publisher's version ) (Open Access

    Xenobiotic-metabolizing enzymes in the skin of rat, mouse, pig, guinea pig, man, and in human skin models

    Get PDF

    Chez les économistes : quelques mots sur l'économétrie

    No full text
    Bouquet La Garrigue V. Chez les économistes : quelques mots sur l'économétrie. In: Annales. Économies, Sociétés, Civilisations. 9ᵉ année, N. 1, 1954. pp. 75-82
    corecore