8,621 research outputs found

    Topological superconductivity in lead nanowires

    Full text link
    Superconductors with an odd number of bands crossing the Fermi energy have topologically protected Andreev states at interfaces, including Majorana states in one dimensional geometries. Superconductivity, a low number of 1D channels, large spin orbit coupling, and a sizeable Zeeman energy, are present in lead nanowires produced by nanoindentation of a Pb tip on a Pb substrate, in magnetic fields higher than the Pb bulk critical field. A number of such devices have been analyzed. In some of them, the dependence of the critical current on magnetic field, and the Multiple Andreev Reflections observed at finite voltages, are compatible with the existence of topological superconductivity

    Electron Fabry-Perot interferometer with two entangled magnetic impurities

    Get PDF
    We consider a one-dimensional (1D) wire along which single conduction electrons can propagate in the presence of two spin-1/2 magnetic impurities. The electron may be scattered by each impurity via a contact-exchange interaction and thus a spin-flip generally occurs at each scattering event. Adopting a quantum waveguide theory approach, we derive the stationary states of the system at all orders in the electron-impurity exchange coupling constant. This allows us to investigate electron transmission for arbitrary initial states of the two impurity spins. We show that for suitable electron wave vectors, the triplet and singlet maximally entangled spin states of the impurities can respectively largely inhibit the electron transport or make the wire completely transparent for any electron spin state. In the latter case, a resonance condition can always be found, representing an anomalous behaviour compared to typical decoherence induced by magnetic impurities. We provide an explanation for these phenomena in terms of the Hamiltonian symmetries. Finally, a scheme to generate maximally entangled spin states of the two impurities via electron scattering is proposed.Comment: 19 page

    A simple deterministic self-organized critical system

    Full text link
    We introduce a new continuous cellular automaton that presents self-organized criticality. It is one-dimensional, totally deterministic, without any kind of embedded randomness, not even in the initial conditions. This system is in the same universality class as the Oslo rice pile system, boundary driven interface depinning and the train model for earthquakes. Although the system is chaotic, in the thermodynamic limit chaos occurs only in a microscopic level.Comment: System slightly modified. New results on Liapunov exponents. Submitted for publication (8 pages

    Chaos in black holes surrounded by gravitational waves

    Get PDF
    The occurrence of chaos for test particles moving around Schwarzschild black holes perturbed by a special class of gravitational waves is studied in the context of the Melnikov method. The explicit integration of the equations of motion for the homoclinic orbit is used to reduce the application of this method to the study of simple graphics.Comment: 15 pages, LaTex

    Electron trapping and acceleration by the plasma wakefield of a self-modulating proton beam

    Get PDF
    It is shown that co-linear injection of electrons or positrons into the wakefield of the self-modulating particle beam is possible and ensures high energy gain. The witness beam must co-propagate with the tail part of the driver, since the plasma wave phase velocity there can exceed the light velocity, which is necessary for efficient acceleration. If the witness beam is many wakefield periods long, then the trapped charge is limited by beam loading effects. The initial trapping is better for positrons, but at the acceleration stage a considerable fraction of positrons is lost from the wave. For efficient trapping of electrons, the plasma boundary must be sharp, with the density transition region shorter than several centimeters. Positrons are not susceptible to the initial plasma density gradient.Comment: 9 pages, 9 figures, 1 table, 44 reference

    Chaos around a H\'enon-Heiles-inspired exact perturbation of a black hole

    Full text link
    A solution of the Einstein's equations that represents the superposition of a Schwarszchild black hole with both quadrupolar and octopolar terms describing a halo is exhibited. We show that this solution, in the Newtonian limit, is an analog to the well known H\'enon-Heiles potential. The integrability of orbits of test particles moving around a black hole representing the galactic center is studied and bounded zones of chaotic behavior are found.Comment: 7 pages Revte
    corecore