683 research outputs found
On closed rotating worlds
A new solution for the stationary closed world with rigid rotation is
obtained for the spinning fluid source. It is found that the spin and vorticity
are locally balanced. This model qualitatively shows that the local rotation of
the cosmological matter can be indeed related to the global cosmic vorticity,
provided the total angular momentum of the closed world is vanishing.Comment: 10 pages, Revtex, to appear in Phys. Rev. D6
Neutron-induced astrophysical reaction rates for translead nuclei
Neutron-induced reaction rates, including fission, are calculated in the
temperature range 1.d8 <T (K) < 1.d10 within the framework of the statistical
model for targets with atomic number 83 < Z < 119 (from Po to Uuo) from the
neutron to the proton drip-line. Four sets of rates have been calculated,
utilizing - where possible - consistent nuclear data for neutron separation
energies and fission barriers from Thomas-Fermi (TF), Extended Thomas-Fermi
plus Strutinsky Integral (ETFSI), Finite-Range Droplet Model (FRDM) and
Hartree-Fock-Bogolyubov (HFB) predictions. Tables of calculated values as well
as analytic seven parameter fits in the standard REACLIB format are supplied.
We also discuss the sensitivity of the rates to the input, aiming at a better
understanding of the uncertainties introduced by the nuclear input.Comment: 14 pages, 10 figures, 2 tables in paper, 2 in Annex and online tables
example
Search for Global Metric Anisotropy in Type Ia Supernova Data
We examine the Type 1a supernova data in order to determine if it shows any
signal of large scale anisotropy. The anisotropy is modelled by an extended
G\"{o}del metric, which incorporates expansion along with rotation. The model
is smoothly connected to the usual FRW type, while expressing anisotropic
metric effects depending on certain parameters. We find no significant signal
of anisotropy in the data. We obtain bounds on an anisotropic redshift versus
magnitude relationship, and accompanying parameters of the G\"{o}del-Obukhov
metric.Comment: 16 pages, 2 figures, minor changes, to be published in Modern Physics
Letters
Evolution of polarization orientations in a flat universe with vector perturbations: CMB and quasistellar objects
Various effects produced by vector perturbations (vortical peculiar velocity fields) of a flat Friedmann-Robertson-Walker background are considered. In the presence of this type of perturbations, the polarization vector rotates. A formula giving the rotation angle is obtained and, then, it is used to prove that this angle depends on both the observation direction and the emission redshift. Hence, rotations are different for distinct quasars and also for the cosmic microwave background (CMB) radiation coming along different directions (from distinct points of the last scattering surface). As a result of these rotations, some correlations could appear in an initially random field of quasar polarization orientations. Furthermore, the polarization correlations of the CMB could undergo alterations. Quasars and CMB maps are both considered in this paper. In the case of linear vector modes with very large spatial scales, the maximum rotation angles appear to be of a few degrees for quasars (located at redshifts z<2.6) and a few tenths of degree for the CMB. These last rotations produce contributions to the B mode of the CMB polarization which are too small to be observed with PLANCK (in the near future); however, these contributions are large enough to be observed with the next generation of satellites, which are being designed to detect the small B mode produced by primordial gravitational waves
Intersections of quadrics, moment-angle manifolds, and Hamiltonian-minimal Lagrangian embeddings
We study the topology of Hamiltonian-minimal Lagrangian submanifolds N in C^m
constructed from intersections of real quadrics in a work of the first author.
This construction is linked via an embedding criterion to the well-known
Delzant construction of Hamiltonian toric manifolds. We establish the following
topological properties of N: every N embeds as a submanifold in the
corresponding moment-angle manifold Z, and every N is the total space of two
different fibrations, one over the torus T^{m-n} with fibre a real moment-angle
manifold R, and another over a quotient of R by a finite group with fibre a
torus. These properties are used to produce new examples of Hamiltonian-minimal
Lagrangian submanifolds with quite complicated topology.Comment: 14 pages, published version (minor changes
Calculations of fission rates for r-process nucleosynthesis
Fission plays an important role in the r-process which is responsible not
only for the yields of transuranium isotopes, but may have a strong influence
on the formation of the majority of heavy nuclei due to fission recycling. We
present calculations of beta-delayed and neutron-induced fission rates, taking
into account different fission barriers predictions and mass formulae.
It is shown that an increase of fission barriers results naturally in a
reduction of fission rates, but that nevertheless fission leads to the
termination of the r-process. Furthermore, it is discussed that the probability
of triple fission could be high for and have an effect on the formation
of the abundances of heavy nuclei. Fission after beta-delayed neutron emission
is discussed as well as different aspects of the influence of fission upon
r-process calculations.Comment: 28 pages, 10 figures, to be published in Nuclear Physics
Future of superheavy element research: Which nuclei could be synthesized within the next few years?
Low values of the fusion cross sections and very short half-lives of nuclei
with Z120 put obstacles in synthesis of new elements. Different nuclear
reactions (fusion of stable and radioactive nuclei, multi-nucleon transfers and
neutron capture), which could be used for the production of new isotopes of
superheavy (SH) elements, are discussed in the paper. The gap of unknown SH
nuclei, located between the isotopes which were produced earlier in the cold
and hot fusion reactions, can be filled in fusion reactions of Ca with
available lighter isotopes of Pu, Am, and Cm. Cross sections for the production
of these nuclei are predicted to be rather large, and the corresponding
experiments can be easily performed at existing facilities. For the first time,
a narrow pathway is found to the middle of the island of stability owing to
possible -decay of SH isotopes which can be formed in ordinary fusion
reactions of stable nuclei. Multi-nucleon transfer processes at near barrier
collisions of heavy (and very heavy, U-like) ions are shown to be quite
realistic reaction mechanism allowing us to produce new neutron enriched heavy
nuclei located in the unexplored upper part of the nuclear map. Neutron capture
reactions can be also used for the production of the long-living neutron rich
SH nuclei. Strong neutron fluxes might be provided by pulsed nuclear reactors
and by nuclear explosions in laboratory conditions and by supernova explosions
in nature. All these possibilities are discussed in the paper.Comment: An Invited Plenary Talk given by Valeriy I. Zagrebaev at the 11th
International Conference on Nucleus-Nucleus Collisions (NN2012), San Antonio,
Texas, USA, May 27-June 1, 2012. To appear in the NN2012 Proceedings in
Journal of Physics: Conference Series (JPCS
Contribution of the magnetic resonance to the third harmonic generation from a fishnet metamaterial
We investigate experimentally and theoretically the third harmonic generated
by a double-layer fishnet metamaterial. To unambiguously disclose most notably
the influence of the magnetic resonance, the generated third harmonic was
measured as a function of the angle of incidence. It is shown experimentally
and numerically that when the magnetic resonance is excited by pump beam, the
angular dependence of the third harmonic signal has a local maximum at an
incidence angle of {\theta} \simeq 20{\deg}. This maximum is shown to be a
fingerprint of the antisymmetric distribution of currents in the gold layers.
An analytical model based on the nonlinear dynamics of the electrons inside the
gold shows excellent agreement with experimental and numerical results. This
clearly indicates the difference in the third harmonic angular pattern at
electric and magnetic resonances of the metamaterial.Comment: 7 pages, 5 figure
Image distortion in non perturbative gravitational lensing
We introduce the idea of {\it shape parameters} to describe the shape of the
pencil of rays connecting an observer with a source lying on his past
lightcone. On the basis of these shape parameters, we discuss a setting of
image distortion in a generic (exact) spacetime, in the form of three {\it
distortion parameters}. The fundamental tool in our discussion is the use of
geodesic deviation fields along a null geodesic to study how source shapes are
propagated and distorted on the path to an observer. We illustrate this
non-perturbative treatment of image distortion in the case of lensing by a
Schwarzschild black hole. We conclude by showing that there is a
non-perturbative generalization of the use of Fermat's principle in lensing in
the thin-lens approximation.Comment: 22 pages, 6 figures, to appear in Phys. Rev. D (January 2001
- …