269 research outputs found

    Internal energy dissipation in Enceladus's ocean from tides and libration and the role of inertial waves

    Full text link
    Enceladus is characterised by a south polar hot spot associated with a large outflow of heat, the source of which remains unclear. We compute the viscous dissipation resulting from tidal and libration forcing in the moon's subsurface ocean using the linearised Navier-Stokes equation in a 3-dimensional spherical model. We conclude that libration is the dominant cause of dissipation at the linear order, providing up to about 0.001 GW of heat to the ocean, which remains insufficient to explain the (about) 10 GW observed by Cassini. We also illustrate how resonances with inertial modes can significantly augment the dissipation. Our work is an extension to Rovira-Navarro et al. [2019] to include the effects of libration. The model developed here is readily applicable to the study of other moons and planets

    Instabilities induced by the precession of spherical shell

    Get PDF

    Astrometric observations of Phobos and Deimos during the 1971 opposition of Mars

    Get PDF
    Accurate positional measurements of planets and satellites are used to improve our knowledge of their dynamics and to infer the accuracy of planet and satellite ephemerides. In the framework of the FP7 ESPaCE project, we provide the positions of Mars, Phobos, and Deimos taken with the U.S. Naval Observatory 26-inch refractor during the 1971 opposition of the planet. These plates were measured with the digitizer of the Royal Observatory of Belgium and reduced through an optimal process that includes image, instrumental, and spherical corrections to provide the most accurate data. We compared the observed positions of the planet Mars and its satellites with the theoretical positions from INPOP10 and DE430 planetary ephemerides, and from NOE and MAR097 satellite ephemerides. The rms residuals in RA and Dec. of one position is less than 60 mas, or about 20 km at Mars. This accuracy is comparable to the most recent CCD observations. Moreover, it shows that astrometric data derived from photographic plates can compete with those of old spacecraft (Mariner 9, Viking 1 and 2).Comment: 5 pages, 3 figure

    Testing Gravitation in the Solar System with Radio Science experiments

    Full text link
    The laws of gravitation have been tested for a long time with steadily improving precision, leading at some moment of time to paradigmatic evolutions. Pursuing this continual effort is of great importance for science. In this communication, we focus on Solar System tests of gravity and more precisely on possible tests that can be performed with radio science observations (Range and Doppler). After briefly reviewing the current tests of gravitation at Solar System scales, we give motivations to continue such experiments. In order to obtain signature and estimate the amplitude of anomalous signals that could show up in radio science observables because of modified gravitational laws, we developed a new software that simulates Range/Doppler signals. We present this new tool that simulates radio science observables directly from the space-time metric. We apply this tool to the Cassini mission during its cruise from Jupiter to Saturn and derive constraints on the parameters entering alternative theories of gravity beyond the standard Parametrized Post Newtonian theory.Comment: proceedings of SF2A 2011 - minor changes (typos corrected - references updated

    ESD Ideas: A 6-year oscillation in the whole Earth system?

    Get PDF
    An oscillation of about 6 years has been reported in Earth&rsquo;s fluid core motions, magnetic field, rotation, and crustal deformations. Recently, a 6-year cycle has also been detected in several climatic parameters (e.g., sea level, surface temperature, precipitation, land ice, land hydrology, and atmospheric angular momentum). Here we suggest that the 6-year oscillations detected in the Earth&rsquo;s deep interior, mantle rotation, and atmosphere are linked together, and that the core processes previously proposed as drivers of the 6-year cycle in the Earth&rsquo;s rotation, cause in addition the atmosphere to oscillate together with the mantle, inducing fluctuations in the climate system with similar periodicities.</p

    Constraining Ceres' interior from its Rotational Motion

    Get PDF
    Context. Ceres is the most massive body of the asteroid belt and contains about 25 wt.% (weight percent) of water. Understanding its thermal evolution and assessing its current state are major goals of the Dawn Mission. Constraints on internal structure can be inferred from various observations. Especially, detailed knowledge of the rotational motion can help constrain the mass distribution inside the body, which in turn can lead to information on its geophysical history. Aims. We investigate the signature of the interior on the rotational motion of Ceres and discuss possible future measurements performed by the spacecraft Dawn that will help to constrain Ceres' internal structure. Methods. We compute the polar motion, precession-nutation, and length-of-day variations. We estimate the amplitudes of the rigid and non-rigid response for these various motions for models of Ceres interior constrained by recent shape data and surface properties. Results. As a general result, the amplitudes of oscillations in the rotation appear to be small, and their determination from spaceborne techniques will be challenging. For example, the amplitudes of the semi-annual and annual nutations are around ~364 and ~140 milli-arcseconds, and they show little variation within the parametric space of interior models envisioned for Ceres. This, combined with the very long-period of the precession motion, requires very precise measurements. We also estimate the timescale for Ceres' orientation to relax to a generalized Cassini State, and we find that the tidal dissipation within that object was probably too small to drive any significant damping of its obliquity since formation. However, combining the shape and gravity observations by Dawn offers the prospect to identify departures of non-hydrostaticity at the global and regional scale, which will be instrumental in constraining Ceres' past and current thermal state. We also discuss the existence of a possible Chandler mode in the rotational motion of Ceres, whose potential excitation by endogenic and/or exogenic processes may help detect the presence of liquid reservoirs within the asteroid.Comment: submitted to Astronomy and Astrophysic

    Impact of tidal Poisson terms on nonrigid Earth rotation

    Get PDF
    Context. The tidal potential generated by bodies in the solar system contains Poisson terms, i.e., periodic terms with linearly time-dependent amplitudes. The influence of these terms on the Earth's rotation, although expected to be small, is of interest for high accuracy modeling. Aims. Therefore, we study their contribution to the rotation of a non-rigid Earth with an elastic mantle and liquid core. Methods. Starting from Liouville's equations, and following an analytical treatment, we obtain the relations accounting for Poisson terms in the forcing and providing the solution for the wobble. Results. We show that the transfer function between rigid and non rigid nutation amplitudes, as usually defined in the literature, must be supplemented by additional terms proportional to the amplitude of the Poisson term of the potential. These new terms are inversely proportional to (sigma - sigma(N))(2) where sigma is the forcing frequency and sigma(N) are the eigenfrequencies associated with the retrograde free core nutation and the Chandler wobble. The highest contribution to the nutation is 6 mu as (Delta psi) on the term 2l' - 2F + 2D - 2 Omega and remains below 1 mu as for the other terms. A contribution of 88 mu as/cy is found to the obliquity rate. We evaluate the variations of the third component of the wobble of the Earth and of the core in response to a zonal tidal potential, and show that there is no significant change

    Radioscience simulations in General Relativity and in alternative theories of gravity

    Full text link
    In this communication, we focus on the possibility to test GR with radioscience experiments. We present a new software that in a first step simulates the Range/Doppler signals directly from the space time metric (thus in GR and in alternative theories of gravity). In a second step, a least-squares fit of the involved parameters is performed in GR. This software allows one to get the order of magnitude and the signature of the modifications induced by an alternative theory of gravity on radioscience signals. As examples, we present some simulations for the Cassini mission in Post-Einsteinian gravity and with the MOND External Field Effect.Comment: 4 pages; Proceedings of "Les Rencontres de Moriond 2011 - Gravitation session
    • 

    corecore