1,310 research outputs found

    Driver-pressure-impact and response-recovery chains in European rivers: observed and predicted effects on BQEs

    Get PDF
    The report presented in the following is part of the outcome of WISER’s river Workpackage WP5.1 and as such part of the module on aquatic ecosystem management and restoration. The ultimate goal of WP5.1 is to provide guidance on best practice restoration and management to the practitioners in River Basin Management. Therefore, a series of analyses was undertaken, each of which used a part of the WP5.1 database in order to track two major pathways of biological response: 1) the response of riverine biota to environmental pressures (degradation) and 2) the response of biota to the reduction of these impacts (restoration). This report attempts to provide empirical evidence on the environment-biota relationships for both pathways

    Effect of Impurity Scattering on the Nonlinear Microwave Response in High-Tc Superconductors

    Get PDF
    We theoretically investigate intermodulation distortion in high-Tc superconductors. We study the effect of nonmagnetic impurities on the real and imaginary parts of nonlinear conductivity. The nonlinear conductivity is proportional to the inverse of temperature owing to the dependence of the damping effect on energy, which arises from the phase shift deviating from the unitary limit. It is shown that the final-states interaction makes the real part predominant over the imaginary part. These effects have not been included in previous theories based on the two-fluid model, enabling a consistent explanation for the experiments with the rf and dc fields

    Local density of states at polygonal boundaries of d-wave superconductors

    Full text link
    Besides the well-known existence of Andreev bound states, the zero-energy local density of states at the boundary of a d-wave superconductor strongly depends on the boundary geometry itself. In this work, we examine the influence of both a simple wedge-shaped boundary geometry and a more complicated polygonal or faceted boundary structure on the local density of states. For a wedge-shaped boundary geometry, we find oscillations of the zero-energy density of states in the corner of the wedge, depending on the opening angle of the wedge. Furthermore, we study the influence of a single Abrikosov vortex situated near a boundary, which is of either macroscopic or microscopic roughness.Comment: 10 pages, 11 figures; submitted to Phys. Rev.

    Optimal thickness of rectangular superconducting microtraps for cold atomic gases

    Full text link
    We study superconducting microtraps with rectangular shapes for cold atomic gases. We present a general argument why microtraps open, if brought close to the surface of the superconductor. We show that for a given width of the strips there exists an optimal thickness under which the closest distance of the microtrap from the superconductor can be achieved. The distance can be significantly improved, if the edge enhancement of the supercurrent near edges and corners is exploited. We compare numerical calculations with results from conformal mapping and show that conformal mapping can often give useful approximate results.Comment: 5 pages, 4 figure

    Shadow on the wall cast by an Abrikosov vortex

    Full text link
    At the surface of a d-wave superconductor, a zero-energy peak in the quasiparticle spectrum can be observed. This peak appears due to Andreev bound states and is maximal if the nodal direction of the d-wave pairing potential is perpendicular to the boundary. We examine the effect of a single Abrikosov vortex in front of a reflecting boundary on the zero-energy density of states. We can clearly see a splitting of the low-energy peak and therefore a suppression of the zero-energy density of states in a shadow-like region extending from the vortex to the boundary. This effect is stable for different models of the single Abrikosov vortex, for different mean free paths and also for different distances between the vortex center and the boundary. This observation promises to have also a substantial influence on the differential conductance and the tunneling characteristics for low excitation energies.Comment: 5 pages, 5 figure

    Radiation linewidth of a long Josephson junction in the flux-flow regime

    Full text link
    Theoretical model for the radiation linewidth in a multi-fluxon state of a long Josephson junction is presented. Starting from the perturbed sine-Gordon model with the temperature dependent noise term, we develop a collective coordinate approach which allows to calculate the finite radiation linewidth due to excitation of the internal degrees of freedom in the moving fluxon chain. At low fluxon density, the radiation linewidth is expected to be substantially larger than that of a lumped Josephson oscillator. With increasing the fluxon density, a crossover to a much smaller linewidth corresponding to the lumped oscillator limit is predicted.Comment: 11 pages LaTeX, to appear in Phys Rev

    Form and width of spectral line of Josephson Flux-Flow oscillator

    Full text link
    The behavior of a Josephson flux-flow oscillator in the presence of both bias current and magnetic field fluctuations has been studied. To derive the equation for slow phase dynamics in the limit of small noise intensity the Poincare method has been used. Both the form of spectral line and the linewidth of the flux-flow oscillator have been derived exactly on the basis of technique presented in the book of Malakhov, known limiting cases are considered, limits of their applicability are discussed and appearance of excess noise is explained. Good coincidence of theoretical description with experimental results has been demonstrated.Comment: 10 pages, 5 figure

    Threshold Two-Pion Photo- and Electroproduction: More neutrals than expected

    Full text link
    We present an exploratory study of two pion photo-- and electroproduction off the nucleon in the threshold region. To calculate the pertinent amplitudes, we make use of heavy baryon chiral perturbation theory. We show that due to finite chiral loops the production cross section for final states with two neutral pions is considerably enhanced. The experimental implications are briefly discussed.Comment: 23pp, plain TeX, 11 figures available upon request, CRN 94/1

    Conceptual aspects of QCD factorization in hadronic B decays

    Get PDF
    I review the meaning of ``QCD factorization'' in hadronic two-body B decays and then discuss recent results of theoretical (rather than phenomenological) nature: the proof of factorization at two loops; the identification of ``chirally enhanced'' power corrections; and the role of annihilation contributions.Comment: 10 pages, LaTeX. Based on talks presented at the UK Phenomenology Workshop on Heavy Flavour and CP Violation, 17 - 22 September 2000, Durham, proceedings to appear in J. Phys. G; the 5th International Symposium on Radiative Corrections (RADCOR2000), Carmel, California, September 11 - 15, 2000; the 4th Workshop on Continuous Advances in QCD, Minneapolis, 12-14 May 2000; the Vth International Workshop on Heavy Quark Physics, Dubna, 6-8 April 200

    Focused laser Doppler velocimeter

    Get PDF
    A system for remotely measuring velocities present in discrete volumes of air is described. A CO2 laser beam is focused by a telescope at such a volume, a focal volume, and within the focusable range, near field, of the telescope. The back scatter, or reflected light, principally from the focal volume, passes back through the telescope and is frequency compared with the original frequency of the laser, and the difference frequency or frequencies represent particle velocities in that focal volume
    corecore