1,852 research outputs found

    Using object-based geomorphometry for hydro-geomorphological analysis in a Mediterranean research catchment

    Get PDF
    Abstract. The aim of the paper is to apply an object-based geomorphometric procedure to define the runoff contribution areas and support a hydro-geomorphological analysis of a 3 km2 Mediterranean research catchment (southern Italy). Daily and sub-hourly discharge and electrical conductivity data were collected and recorded during a 3-year monitoring activity. Hydro-chemograph analyses carried out on these data revealed a strong seasonal hydrological response in the catchment that differed from the stormflow events that occur in the wet periods and in dry periods. This analysis enabled us to define the hydro-chemograph signatures related to increasing flood magnitude, which progressively involves various runoff components (baseflow, subsurface flow and surficial flow) and an increasing contributing area to discharge. Field surveys and water table/discharge measurements carried out during a selected storm event enabled us to identify and map specific runoff source areas with homogeneous geomorphological units previously defined as hydro-geomorphotypes (spring points, diffuse seepage along the main channel, seepage along the riparian corridors, diffuse outflow from hillslope taluses and concentrate sapping from colluvial hollows). Following the procedures previously proposed and used by authors for object-based geomorphological mapping, a hydro-geomorphologically oriented segmentation and classification was performed with the eCognition (Trimble, Inc.) package. The best agreement with the expert-based geomorphological mapping was obtained with weighted plan curvature at different-sized windows. By combining the hydro-chemical analysis and object-based hydro-geomorphotype map, the variability of the contribution areas was graphically modeled for the selected event, which occurred during the wet season, by using the log values of flow accumulation that better fit the contribution areas. The results allow us to identify the runoff component on hydro-chemographs for each time step and calculate a specific discharge contribution from each hydro-geomorphotype. This kind of approach could be useful when applied to similar, rainfall-dominated, forested and no-karst catchments in the Mediterranean eco-region

    Assessment of water vapor content from MIVIS TIR data

    Get PDF
    The main objective of land remotely sensed images is to derive biological, chemical and physical parameters by inverting sample sets of spectral data. For the above aim hyperspectral scanners on airborne platform are a powerful remote sensing instrument for both research and environmental applications because of their spectral resolution and the high operability of the platform. Fine spectral information by MIVIS (airborne hyperspectral scanner operating in 102 channels ranging from VIS to TIR) allows researchers to characterize atmospheric parameters and their effects on measured data which produce undesirable features on surface spectral signatures. These effects can be estimated (and remotely sensed radiances corrected) if atmospheric spectral transmittance is known at each image pixel. Usually ground-based punctual observations (atmospheric sounding balloons, sun photometers, etc.) are used to estimate the main physical parameters (like water vapor and temperature profiles) which permit us to estimate atmospheric spectral transmittance by using suitable radiative transfer model and a specific (often too strong) assumption which enable atmospheric properties measured only in very few points to be extended to the whole image. Several atmospheric gases produce observable absorption features, but only water vapor strongly varies in time and space. In this work the authors customize a self-sufficient «split-window technique» to derive (at each image pixel) atmospheric total columnar water vapor content (TWVC) using only MIVIS data collected by the fourth MIVIS spectrometer (Thermal Infrared band). MIVIS radiances have been simulated by means of MODTRAN4 radiative transfer code and the coefficients of linear regression to estimate TWVC from «split-windows» MIVIS radiances, based on 450 atmospheric water vapor profiles obtained by radiosonde data provided by NOAA\NESDIS. The method has been applied to produce maps describing the spatial variability of the water vapor columnar content along a trial scene. The procedure has been validated by means of the MIVIS data acquired over Venice and the contemporary radiosonde data. A discrepancy within 5% has been measured between the estimate of TWVC derived from the proposed self-sufficient split-window technique and the coincident radiosonde measurements. If confirmed by further analyses such a result will permit us to fully exploit MIVIS TIR capability to offer a more effective (at image pixel level) and self-sufficient (no ancillary observations required) way to obtain atmospherically corrected MIVIS radiances

    Quasi-Orthogonal Wideband Radar Waveforms Based on Chaotic Systems

    Get PDF
    Many radar applications, such as those involving multiple-input, multiple-output (MIMO) radar, require sets of waveforms that are orthogonal, or nearly orthogonal. As shown in the work presented here, a set of nearly orthogonal waveforms with a high cardinality can be generated using chaotic systems, and this set performs comparably to other waveform sets used in pulse compression radar systems. Specifically, the nearly orthogonal waveforms from chaotic systems are shown to possess many desirable radar properties including a compact spectrum, low range sidelobes, and an average transmit power within a few dB of peak power. Moreover, these waveforms can be generated at essentially any practical time length and bandwidth. Since these waveforms are generated from a deterministic process, each waveform can be represented with a small number of system parameters. Additionally, assuming these waveforms possess a large time-bandwidth product, a high number of nearly orthogonal chaotic waveforms exist for a given time and bandwidth. Thus the proposed generation procedure can potentially be used to generate a new transmit waveform on each pulse.United States. Air Force (Contract FA8721-05-C-0002)Massachusetts Institute of Technology. Research Laboratory of ElectronicsBAE SystemsTexas Instruments Incorporated. Leadership University Consortium Progra

    Appropriate end points for the characterization of behavioral changes in developmental toxicology.

    Get PDF
    The present paper is devoted to second- and higher-tier test methods for the characterization of behavioral changes produced in rodents by exposure to noxious agents during development. The paper analyzes a series of end points that are informative about specific processes and underlying regulatory mechanisms but require greater technical sophistication and larger investments than first-tier end points. This applies to ultrasonic emissions in successive postnatal periods; to mother-pup interactions, including appropriate cross-fostering controls; to social (including sexual) interaction tests from the infantile to the young adult stage; and to a variety of conditioning and learning tests using both positive and negative reinforcement

    The hypoxia sensitive metal transcription factor MTF-1 activates NCX1 brain promoter and participates in remote postconditioning neuroprotection in stroke

    Get PDF
    Remote limb ischemic postconditioning (RLIP) is an experimental strategy in which short femoral artery ischemia reduces brain damage induced by a previous harmful ischemic insult. Ionic homeostasis maintenance in the CNS seems to play a relevant role in mediating RLIP neuroprotection and among the effectors, the sodium-calcium exchanger 1 (NCX1) may give an important contribution, being expressed in all CNS cells involved in brain ischemic pathophysiology. The aim of this work was to investigate whether the metal responsive transcription factor 1 (MTF-1), an important hypoxia sensitive transcription factor, may (i) interact and regulate NCX1, and (ii) play a role in the neuroprotective effect mediated by RLIP through NCX1 activation. Here we demonstrated that in brain ischemia induced by transient middle cerebral occlusion (tMCAO), MTF-1 is triggered by a subsequent temporary femoral artery occlusion (FAO) and represents a mediator of endogenous neuroprotection. More importantly, we showed that MTF-1 translocates to the nucleus where it binds the metal responsive element (MRE) located at −23/−17 bp of Ncx1 brain promoter thus activating its transcription and inducing an upregulation of NCX1 that has been demonstrated to be neuroprotective. Furthermore, RLIP restored MTF-1 and NCX1 protein levels in the ischemic rat brain cortex and the silencing of MTF-1 prevented the increase of NCX1 observed in RLIP protected rats, thus demonstrating a direct regulation of NCX1 by MTF-1 in the ischemic cortex of rat exposed to tMCAO followed by FAO. Moreover, silencing of MTF-1 significantly reduced the neuroprotective effect elicited by RLIP as demonstrated by the enlargement of brain infarct volume observed in rats subjected to RLIP and treated with MTF-1 silencing. Overall, MTF-dependent activation of NCX1 and their upregulation elicited by RLIP, besides unraveling a new molecular pathway of neuroprotection during brain ischemia, might represent an additional mechanism to intervene in stroke pathophysiology

    Lidar in Space Technology Experiment correlative measurements by lidar in Potenza, southern Italy.

    Get PDF
    An intensive lidar measurement campaign was carried out in Potenza (40°36′N-15°44′E, 820 m above sea level (asl)) in conjunction with the Lidar in Space Technology Experiment (LITE) mission and primarily aimed at the validation of LITE stratospheric aerosol measurements. Potenza lidar measurements in coincidence with all five nighttime overpasses near southern Italy (September 11, 12, 17, and 18, 1994) are compared with simultaneous LITE data. Potenza lidar data appear to be highly correlated with LITE data both at 355 and 532 nm. Potenza lidar versus LITE measurements of the aerosol-scattering ratio show a correlation coefficient of 0.72–0.81 at 355 nm and 0.88–0.93 at 532 nm, with an average calibration coefficient of 0.92 ± 0.19 at 355 nm and 1.02 ± 0.07 at 532 nm. Comparisons are also made in terms of the average Angstrom coefficient, whose values are consistent with submicrometer aerosol particles. Finally, Potenza lidar measurements of the aerosol layer base and top heights, the peak aerosol-scattering ratio and peak height, as well as of the aerosol scattering ratio at the cloud base appear to be consistent with measurements performed by other ground lidar stations in Europe during the LITE campaign as well as with the LITE data
    • …
    corecore