246 research outputs found

    Decrease in drug accumulation and in tumour aggressiveness marker expression in a fenretinide-induced resistant ovarianumour cell line

    Get PDF
    We investigated whether the efficacy of fenretinide (HPR) against ovarian tumours may be limited by induction of resistance. The human ovarian carcinoma cell line A2780, which is sensitive to a pharmacologically achievable HPR concentration (IC 50= 1 μM), became 10-fold more resistant after exposure to increasing HPR concentrations. The cells (A2780/HPR) did not show cross-resistance to the synthetic retinoid 6-[3-adamantyl-4-hydroxyphenyl]-2-naphthalene carboxylic acid (CD437) and were not sensitive, similarly to the parent line, to all- trans -retinoic acid, 13- cis -retinoic acid or N-(4-methoxyphenyl)retinamide. A2780/HPR cells showed, compared to parental cells, a 3-fold reduction in colony-forming ability in agar. The development of HPR resistance was associated with a marked increase in retinoic acid receptor β (RARβ) mRNA and protein levels, which decreased, together with drug resistance, after drug removal. The expression of cell surface molecules associated with tumour progression including HER-2, laminin receptor and β1 integrin was markedly reduced. The increase in the levels of reactive oxygen species is not involved in HPR-resistance because it was similar in parental and resistant cells. Conversely differences in pharmacokinetics may account for resistance because, in A2780/HPR cells, intracellular peak drug levels were 2 times lower than in A2780 cells and an as yet unidentified polar metabolite was present. These data suggest that acquired resistance to HPR is associated with changes in marker expression, suggestive of a more differentiated status and may be explained, at least in part, by reduced drug accumulation and increased metabolism. © 2001 Cancer Research Campaign http://www.bjcancer.co

    X-rays investigations for the characterization of two 17th century brass instruments from Nuremberg

    Get PDF
    A recent finding at the Castello Sforzesco in Milan of two brass natural horns from the end of the 17th century and assigned to the Haas family from Nuremberg brought to light new information about this class of objects. The instruments were heavily damaged, but their historical value was great. In this study, a multidisciplinary approach mainly based on non-invasive analytical techniques and including X-rays investigations (X-ray radiography, X-ray fluorescence and X-ray diffraction) was used. The present study was aimed at: i) pointing out the executive techniques for archaeometric purposes; ii) characterizing the morphological and the chemical features of materials; and iii) identifying and mapping the damages of the structure and the alterations of the surface

    Perfusion of isolated rat kidney with Mesenchymal Stromal Cells/Extracellular Vesicles prevents ischaemic injury

    Get PDF
    Kidney donation after circulatory death (DCD) is a less than ideal option to meet organ shortages. Hypothermic machine perfusion (HMP) with Belzer solution (BS) improves the viability of DCD kidneys, although the graft clinical course remains critical. Mesenchymal stromal cells (MSC) promote tissue repair by releasing extracellular vesicles (EV). We evaluated whether delivering MSC-/MSC-derived EV during HMP protects rat DCD kidneys from ischaemic injury and investigated the underlying pathogenic mechanisms. Warm ischaemic isolated kidneys were cold-perfused (4 hrs) with BS, BS supplemented with MSC or EV. Renal damage was evaluated by histology and renal gene expression by microarray analysis, RT-PCR. Malondialdehyde, lactate, LDH, glucose and pyruvate were measured in the effluent fluid. MSC-/EV-treated kidneys showed significantly less global ischaemic damage. In the MSC/EV groups, there was up-regulation of three genes encoding enzymes known to improve cell energy metabolism and three genes encoding proteins involved in ion membrane transport. In the effluent fluid, lactate, LDH, MDA and glucose were significantly lower and pyruvate higher in MSC/EV kidneys as compared with BS, suggesting the larger use of energy substrates by MSC/EV kidneys. The addition of MSC/EV to BS during HMP protects the kidney from ischaemic injury by preserving the enzymatic machinery essential for cell viability and protects the kidney from reperfusion damage

    A melanoma subtype with intrinsic resistance to BRAF inhibition identified by receptor tyrosine kinases gene-driven classification

    Get PDF
    Dysregulation of receptor tyrosine kinases (RTKs) contributes to several aspects of oncogenesis including drug resistance. In melanoma, distinct RTKs have been involved in BRAF inhibitors (BRAFi) resistance, yet the utility of RTKs expression pattern to identify intrinsically resistant tumors has not been assessed. Transcriptional profiling of RTKs and integration with a previous classification, reveals three robust subtypes in two independent datasets of melanoma cell lines and one cohort of melanoma samples. This classification was validated by Western blot in a panel of patient-derived melanoma cell lines. One of the subtypes identified here for the first time displayed the highest and lowest expression of EGFR and ERBB3, respectively, and included BRAF-mutant tumors all intrinsically resistant to BRAFi PLX4720, as assessed by analysis of the Cancer Cell Line Encyclopedia pharmacogenomic study and by in vitro growth inhibition assays. High levels of EGFR were detected, even before therapy, in tumor cells of one of three melanoma patients unresponsive to BRAFi. Use of different pharmacological inhibitors highlighted the relevance of PI3K/mTOR signaling for growth of this PLX4720-resistant subtype. Our results identify a specific molecular profile of melanomas intrinsically resistant to BRAFi and suggest the PI3K/mTOR pathway as a potential therapeutic target for these tumors

    Tail myology and flight behaviour: Differences between caracaras, falcons and forest falcons (Aves, Falconiformes)

    Get PDF
    Caracaras, falcons and forest falcons, which are representative of the three subfamilies of the family Falconidae, have different flight behaviour. Since, during flight, the tail works in coordination with the wings, the tail muscles could be indicative of the type of flight behaviour. The aim of this work was to describe in detail the little-known tail muscles of the Falconidae and to explore their possible association with this different behaviour, by using the muscle mass as an indicator. To this end, the tail muscles of 18 specimens representing the three subfamilies of Falconidae were dissected, weighed and their percentage to the body mass calculated. The possible differences in tail muscle mass between Falconinae and Polyborinae were explored with a Bayesian statistical approach. In all species, the muscles depressor caudae and levator caudae had the highest mass values (0.028%–0.329% and 0.120%–0.274%, respectively), in accordance with the key movements performed during flight, that is, the tail depression and elevation. The total muscle masses of Falconinae and those of Polyborinae were significantly different (p < 0.05). This difference can be related with the different flight behaviour of falcons and caracaras, that is, fast and erratic flight, respectively.Fil: Mosto, María Clelia. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. División Paleontología Vertebrados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Picasso, Mariana Beatriz Julieta. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. División Paleontología Vertebrados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Montes, Martin Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Estudios Parasitológicos y de Vectores. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Estudios Parasitológicos y de Vectores; ArgentinaFil: Krone, Oliver. Leibniz Institute For Zoo And Wildlife Research.; Alemani

    Heme oxygenase-1 derived carbon monoxide suppresses Aβ1-42 toxicity in astrocytes

    Get PDF
    Neurodegeneration in Alzheimer’s disease (AD) is extensively studied, and the involvement of astrocytes and other cell types in this process has been described. However, the responses of astrocytes themselves to amyloid β peptides ((Aβ; the widely accepted major toxic factor in AD) is less well understood. Here, we show that Aβ(1-42) is toxic to primary cultures of astrocytes. Toxicity does not involve disruption of astrocyte Ca2+ homeostasis, but instead occurs via formation of the toxic reactive species, peroxynitrite. Thus, Aβ(1-42) raises peroxynitrite levels in astrocytes, and Aβ(1-42) toxicity can be inhibited by antioxidants, or by inhibition of nitric oxide (NO) formation (reactive oxygen species (ROS) and NO combine to form peroxynitrite), or by a scavenger of peroxynitrite. Increased ROS levels observed following Aβ(1-42) application were derived from NADPH oxidase. Induction of heme oxygenase-1 (HO-1) protected astrocytes from Aβ(1-42) toxicity, and this protective effect was mimicked by application of the carbon monoxide (CO) releasing molecule CORM-2, suggesting HO-1 protection was attributable to its formation of CO. CO suppressed the rise of NADPH oxidase-derived ROS caused by Aβ(1-42). Under hypoxic conditions (0.5% O2, 48h) HO-1 was induced in astrocytes and Aβ(1-42) toxicity was significantly reduced, an effect which was reversed by the specific HO-1 inhibitor, QC-15. Our data suggest that Aβ(1-42) is toxic to astrocytes, but that induction of HO-1 affords protection against this toxicity due to formation of CO. HO-1 induction, or CO donors, would appear to present attractive possible approaches to provide protection of both neuronal and non-neuronal cell types from the degenerative effects of AD in the central nervous system

    Activated Leukocyte Cell Adhesion Molecule Expression and Shedding in Thyroid Tumors

    Get PDF
    Activated leukocyte cell adhesion molecule (ALCAM, CD166) is expressed in various tissues, cancers, and cancer-initiating cells. Alterations in expression of ALCAM have been reported in several human tumors, and cell adhesion functions have been proposed to explain its association with cancer. Here we documented high levels of ALCAM expression in human thyroid tumors and cell lines. Through proteomic characterization of ALCAM expression in the human papillary thyroid carcinoma cell line TPC-1, we identified the presence of a full-length membrane-associated isoform in cell lysate and of soluble ALCAM isoforms in conditioned medium. This finding is consistent with proteolytically shed ALCAM ectodomains. Nonspecific agents, such as phorbol myristate acetate (PMA) or ionomycin, provoked increased ectodomain shedding. Epidermal growth factor receptor stimulation also enhanced ALCAM secretion through an ADAM17/TACE-dependent pathway. ADAM17/TACE was expressed in the TPC-1 cell line, and ADAM17/TACE silencing by specific small interfering RNAs reduced ALCAM shedding. In addition, the CGS27023A inhibitor of ADAM17/TACE function reduced ALCAM release in a dose-dependent manner and inhibited cell migration in a wound-healing assay. We also provide evidence for the existence of novel O-glycosylated forms and of a novel 60-kDa soluble form of ALCAM, which is particularly abundant following cell stimulation by PMA. ALCAM expression in papillary and medullary thyroid cancer specimens and in the surrounding non-tumoral component was studied by western blot and immunohistochemistry, with results demonstrating that tumor cells overexpress ALCAM. These findings strongly suggest the possibility that ALCAM may have an important role in thyroid tumor biology

    Heme oxygenase-1 derived carbon monoxide suppresses Aβ1-42 toxicity in astrocytes

    Get PDF
    Neurodegeneration in Alzheimer’s disease (AD) is extensively studied, and the involvement of astrocytes and other cell types in this process has been described. However, the responses of astrocytes themselves to amyloid peptides ((A; the widely accepted major toxic factor in AD) is less well understood. Here, we show that A(1-42) is toxic to primary cultures of astrocytes. Toxicity does not involve disruption of astrocyte Ca2+ homeostasis, but instead occurs via formation of the toxic reactive species, peroxynitrite. Thus, A(1-42) raises peroxynitrite levels in astrocytes, and A(1-42) toxicity can be inhibited by antioxidants, or by inhibition of nitric oxide (NO) formation (reactive oxygen species (ROS) and NO combine to form peroxynitrite), or by a scavenger of peroxynitrite. Increased ROS levels observed following A(1-42) application were derived from NADPH oxidase. Induction of heme oxygenase-1 (HO-1) protected astrocytes from A(1-42) toxicity, and this protective effect was mimicked by application of the carbon monoxide (CO) releasing molecule CORM-2, suggesting HO-1 protection was attributable to its formation of CO. CO suppressed the rise of NADPH oxidase-derived ROS caused by A(1-42). Under hypoxic conditions (0.5% O2, 48h) HO-1 was induced in astrocytes and A(1-42) toxicity was significantly reduced, an effect which was reversed by the specific HO-1 inhibitor, QC-15. Our data suggest that A(1-42) is toxic to astrocytes, but that induction of HO-1 affords protection against this toxicity due to formation of CO. HO-1 induction, or CO donors, would appear to present attractive possible approaches to provide protection of both neuronal and non-neuronal cell types from the degenerative effects of AD in the central nervous system

    Mammaglobin B is an independent prognostic marker in epithelial ovarian cancer and its expression is associated with reduced risk of disease recurrence

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Traditional prognostic factors in epithelial ovarian cancer (EOC) are inadequate in predicting recurrence and long-term prognosis, but genome-wide cancer research has recently provided multiple potentially useful biomarkers. The gene codifying for Mammaglobin B (MGB-2) has been selected from our previous microarray analysis performed on 19 serous papillary epithelial ovarian cancers and its expression has been further investigated on multiple histological subtypes, both at mRNA and protein level. Since, to date, there is no information available on the prognostic significance of MGB-2 expression in cancer, the aim of this study was to determine its prognostic potential on survival in a large cohort of well-characterized EOC patients.</p> <p>Methods</p> <p>MGB-2 expression was evaluated by quantitative real time-PCR in fresh-frozen tissue biopsies and was validated by immunohistochemistry in matched formalin fixed-paraffin embedded tissue samples derived from a total of 106 EOC patients and 27 controls. MGB-2 expression was then associated with the clinicopathologic features of the tumors and was correlated with clinical outcome.</p> <p>Results</p> <p>MGB-2 expression was found significantly elevated in EOC compared to normal ovarian controls, both at mRNA and protein level. A good correlation was detected between MGB-2 expression data obtained by the two different techniques. MGB-2 expressing tumors were significantly associated with several clinicopathologic characteristics defining a less aggressive tumor behavior. Univariate survival analysis revealed a decreased risk for cancer-related death, recurrence and disease progression in MGB-2-expressing patients (p < 0.05). Moreover, multivariate analysis indicated that high expression levels of MGB-2 transcript (HR = 0.25, 95%, 0.08–0.75, p = 0.014) as well as positive immunostaining for the protein (HR = 0.41, 95%CI, 0.17–0.99, p = 0.048) had an independent prognostic value for disease-free survival.</p> <p>Conclusion</p> <p>This is the first report documenting that MGB-2 expression characterizes less aggressive forms of EOC and is correlated with a favorable outcome. These findings suggest that the determination of MGB-2, especially at molecular level, in EOC tissue obtained after primary surgery can provide additional prognostic information about the risk of recurrence.</p
    corecore