314 research outputs found

    Liquid sample processor

    Get PDF
    Processor is automatic and includes series of extraction tubes packed with fibrous absorbent material of large surface area. When introduced into these tubes, liquid test samples become completely absorbed by packing material as thin film

    'Kandinsky-fying’ the law: A translaborative use of abstract art in the law classroom

    Get PDF
    Sources of law are made up of terms that, amongst other things, mediate between facts and different results, and it is the role of lawyers to explain or justify why a particular interpretation or permutation of a given term should be taken in a given case. Such terms do not exist in isolation, but are hugely contextual and play an integral role in intermediating between different potential outcomes. Therefore, the skill of carefully applying and using legal terms is one of the primary focuses of legal education and calls for a consideration of the intricate role that legal terms play in legal argumentation. However, sometimes this endeavour in the law classroom is affected by the focus placed on the meaning of individual terms, as opposed to the broader role they have in legal reasoning and the analysis of legal outcomes. In considering this, this paper draws a contrast between the way in which students sometimes use different legal and moral terms in the various roles in their lives outside of the classrooms and within, and contends that one of the reasons for this is the greater liberty that they feel in using different terms outside of the classroom. This paper contends that, pedagogically, a similar level of independence can be achieved through the collaborative translation of legal concepts into abstract art, by enabling students to take greater co-ownership of legal language. Specifically, it argues that Wassily Kandinsky’s art theory, with its emphasis on the spirit and emotions, can provide an effective framework for this

    ABCB1 genotypes and haplotypes in patients with dementia and age-matched non-demented control patients

    Get PDF
    Amyloid β is an in vitro substrate for P-glycoprotein (P-gp), an efflux pump at the blood brain barrier (BBB). The Multi Drug Resistance (ABCB1) gene, encoding for P-gp, is highly polymorphic and this may result in a changed function of P-gp and may possibly interfere with the pathogenesis of Alzheimer's disease. This study investigates to what extent ABCB1 Single Nucleotide Polymorphisms (SNPs; C1236T in exon 12, G2677T/A in exon 21 and C3435T in exon 26) and inferred haplotypes exist in an elderly population and if these SNPs and haplotypes differ between patients with dementia and age-matched non-demented control patients. ABCB1 genotype, allele and haplotype frequencies were neither significantly different between patients with dementia and age-matched controls, nor between subgroups of different types of dementia nor age-matched controls. This study shows ABCB1 genotype frequencies to be comparable with described younger populations. To our knowledge this is the first study on ABCB1 genotypes in dementia. ABCB1 genotypes are presently not useful as a biomarker for dementia, as they were not significantly different between demented patients and age-matched control subjects

    Integrability of a conducting elastic rod in a magnetic field

    Full text link
    We consider the equilibrium equations for a conducting elastic rod placed in a uniform magnetic field, motivated by the problem of electrodynamic space tethers. When expressed in body coordinates the equations are found to sit in a hierarchy of non-canonical Hamiltonian systems involving an increasing number of vector fields. These systems, which include the classical Euler and Kirchhoff rods, are shown to be completely integrable in the case of a transversely isotropic rod; they are in fact generated by a Lax pair. For the magnetic rod this gives a physical interpretation to a previously proposed abstract nine-dimensional integrable system. We use the conserved quantities to reduce the equations to a four-dimensional canonical Hamiltonian system, allowing the geometry of the phase space to be investigated through Poincar\'e sections. In the special case where the force in the rod is aligned with the magnetic field the system turns out to be superintegrable, meaning that the phase space breaks down completely into periodic orbits, corresponding to straight twisted rods.Comment: 19 pages, 1 figur

    Combined Chlorophyll Fluorescence and Transcriptomic Analysis Identifies the P3/P4 Transition as a Key stage in Rice Leaf Photosynthetic Development

    No full text
    Leaves are derived from heterotrophic meristem tissue that, at some point, must make the transition to autotrophy via the initiation of photosynthesis. However, the timing and spatial coordination of the molecular and cellular processes underpinning this switch are poorly characterized. Here, we report on the identification of a specific stage in rice (Oryza sativa) leaf development (P3/P4 transition) when photosynthetic competence is first established. Using a combined physiological and molecular approach, we show that elements of stomatal and vascular differentiation are coordinated with the onset of measurable light absorption for photosynthesis. Moreover, by exploring the response of the system to environmental perturbation, we show that the earliest stages of rice leaf development have significant plasticity with respect to elements of cellular differentiation of relevance for mature leaf photosynthetic performance. Finally, by performing an RNA sequencing analysis targeted at the early stages of rice leaf development, we uncover a palette of genes whose expression likely underpins the acquisition of photosynthetic capability. Our results identify the P3/P4 transition as a highly dynamic stage in rice leaf development when several processes for the initiation of photosynthetic competence are coordinated. As well as identifying gene targets for future manipulation of rice leaf structure/function, our data highlight a developmental window during which such manipulations are likely to be most effective

    Overcoming global inequality is critical for land-based mitigation in line with the Paris Agreement

    Get PDF
    Transformation pathways for the land sector in line with the Paris Agreement depend on the assumption of globally implemented greenhouse gas (GHG) emission pricing, and in some cases also on inclusive socio-economic development and sustainable land-use practices. In such pathways, the majority of GHG emission reductions in the land system is expected to come from low- and middle-income countries, which currently account for a large share of emissions from agriculture, forestry and other land use (AFOLU). However, in low- and middle-income countries the economic, financial and institutional barriers for such transformative changes are high. Here, we show that if sustainable development in the land sector remained highly unequal and limited to high-income countries only, global AFOLU emissions would remain substantial throughout the 21st century. Our model-based projections highlight that overcoming global inequality is critical for land-based mitigation in line with the Paris Agreement. While also a scenario purely based on either global GHG emission pricing or on inclusive socio-economic development would achieve the stringent emissions reductions required, only the latter ensures major co-benefits for other Sustainable Development Goals, especially in low- and middle-income regions. © 2022, The Author(s)

    The role of a changing Arctic Ocean and climate for the biogeochemical cycling of dimethyl sulphide and carbon monoxide

    Get PDF
    Dimethyl sulphide (DMS) and carbon monoxide(CO) are climate-relevant trace gases that play key roles in the radiative budget of the Arctic atmosphere. Under global warming, Arctic sea ice retreats at an unprecedented rate, altering light penetration and biological communities, and potentially affect DMS and CO cycling in the Arctic Ocean. This could have socio-economic implications in and beyond the Arctic region. However, little is known about CO production pathways and emissions in this region and the future development of DMS and CO cycling. Here we summarize the current understanding and assess potential future changes of DMS and CO cycling in relation to changes in sea ice coverage, light penetration, bacterial and microalgal communities, pH and physical properties. We suggest that production of DMS and CO might increase with ice melting, increasing light availability and shifting phytoplankton community. Among others, policy measures should facilitate large scale process studies, coordinated long term observations and modelling efforts to improve our current understanding of the cycling and emissions of DMS and CO in the Arctic Ocean and of global consequences
    • …
    corecore