143 research outputs found

    Commentary on Woods

    Get PDF

    Commentary on Carozza

    Get PDF

    Ethical Impartiality, an Expression of the Spirit of Critical Thinking?

    Get PDF

    Culture, Judgment, Integration of Attention and Argumentation

    Get PDF
    Some exchanges of reasons are agonistic. Others work mutually, as in planning and adjusting divergent understanding. Mutual argumentation subconsciously yields judgment that integrates and clarifies a common vision coordinating interrelated lives. It harmonizes agents sharing a space of action and understanding. Pierre Bourdieu held that such thought generates and expresses culture, patterning a logic that reflexively constrains itself. This discussion examines Bourdieu’s views as an analysis of mutual argumentation

    Wide reflective equilibrium and conductive argument

    Get PDF
    In this paper I compare and contrast Rawls’s notion of reflective equilibrium with Wellman‘s notion of conductive argument. In the course of so doing I will address two key questions: (1) Are conduc-tive argument and reflective equilibrium best understood as modes of reasoning or types of argument? and (2) What relationship (logical, pragmatic, etc.), if any, is there between them

    Pore dimensions and the role of occupancy in unitary conductance of Shaker K channels

    Get PDF
    IndexaciĂłn: Web of Science; Scopus.K channels mediate the selective passage of K+ across the plasma membrane by means of intimate interactions with ions at the pore selectivity filter located near the external face. Despite high conservation of the selectivity filter, the K+ transport properties of different K channels vary widely, with the unitary conductance spanning a range of over two orders of magnitude. Mutation of Pro475, a residue located at the cytoplasmic entrance of the pore of the small-intermediate conductance K channel Shaker (Pro475Asp (P475D) or Pro475Gln (P475Q)), increases Shaker's reported. 20-pS conductance by approximately six-and approximately threefold, respectively, without any detectable effect on its selectivity. These findings suggest that the structural determinants underlying the diversity of K channel conductance are distinct from the selectivity filter, making P475D and P475Q excellent probes to identify key determinants of the K channel unitary conductance. By measuring diffusion-limited unitary outward currents after unilateral addition of 2 M sucrose to the internal solution to increase its viscosity, we estimated a pore internal radius of capture of 0.82 for all the three Shaker variants (wild type, P475D, and P475Q). This estimate is consistent with the internal entrance of the Kv1.2/2.1 structure if the effective radius of hydrated K+ is set to 4 A. Unilateral exposure to sucrose allowed us to estimate the internal and external access resistances together with that of the inner pore. We determined that Shaker resistance resides mainly in the inner cavity, whereas only similar to 8% resides in the selectivity filter. To reduce the inner resistance, we introduced additional aspartate residues into the internal vestibule to favor ion occupancy. No aspartate addition raised the maximum unitary conductance, measured at saturating [K+], beyond that of P475D, suggesting an similar to 200-pS conductance ceiling for Shaker. This value is approximately one third of the maximum conductance of the large conductance K (BK) channel (the K channel of highest conductance), reducing the energy gap between their K+ transport rates to similar to 1 kT. Thus, although Shaker's pore sustains ion translocation as the BK channel's does, higher energetic costs of ion stabilization or higher friction with the ion's rigid hydration cage in its narrower aqueous cavity may entail higher resistance.http://jgp.rupress.org/content/146/2/13

    Maxwell Model of Traffic Flows

    Full text link
    We investigate traffic flows using the kinetic Boltzmann equations with a Maxwell collision integral. This approach allows analytical determination of the transient behavior and the size distributions. The relaxation of the car and cluster velocity distributions towards steady state is characterized by a wide range of velocity dependent relaxation scales, R1/2<τ(v)<RR^{1/2}<\tau(v)<R, with RR the ratio of the passing and the collision rates. Furthermore, these relaxation time scales decrease with the velocity, with the smallest scale corresponding to the decay of the overall density. The steady state cluster size distribution follows an unusual scaling form Pm∌−4Κ(m/<m>2)P_m \sim ^{-4} \Psi(m/< m>^2). This distribution is primarily algebraic, Pm∌m−3/2P_m\sim m^{-3/2}, for mâ‰Ș2m\ll ^2, and is exponential otherwise.Comment: revtex, 10 page

    ATIC/PAMELA anomaly from fermionic decaying Dark Matter

    Full text link
    We demonstrate that an economical two Higgs doublet model can explain the electron and positron excesses in the recent ATIC and PAMELA experiments by the three body decays of the dark matter (DM) fermions without requiring the fine turning of the couplings and degeneracy of masses. We also show that the mass and lifetime of the decaying DM particle may not be fixed to be around 1 TeV and 10^{26} sec, respectively. Moreover, we note that this model includes a stable dark matter candidate as well.Comment: 8 pages, 4 figures; references added, typos corrected. The version to appear in PL

    Voltage- and cold-dependent gating of single TRPM8 ion channels

    Get PDF
    Transient receptor potential (TRP) channels play critical roles in cell signaling by coupling various environmental factors to changes in membrane potential that modulate calcium influx. TRP channels are typically activated in a polymodal manner, thus integrating multiple stimuli. Although much progress has been made, the underlying mechanisms of TRP channel activation are largely unknown. The TRPM8 cation channel has been extensively investigated as a major neuronal cold sensor but is also activated by voltage, calcium store depletion, and some lipids as well as by compounds that produce cooling sensations, such as menthol or icilin. Several models of TRPM8 activation have been proposed to explain the interaction between these diverse stimuli. However, a kinetic scheme is not yet available that can describe the detailed single-channel kinetics to gain further insight into the underlying gating mechanism. To work toward this goal, we investigated voltage-dependent single-channel gating in cell-attached patches at two different temperatures (20 and 30°C) using HEK293 cells stably expressing TRPM8. Both membrane depolarization and cooling increased channel open probability (Po) mainly by decreasing the duration of closed intervals, with a smaller increase in the duration of open intervals. Maximum likelihood analysis of dwell times at both temperatures indicated gating in a minimum of five closed and two open states, and global fitting over a wide range of voltages identified a seven-state model that described the voltage dependence of Po, the single-channel kinetics, and the response of whole-cell currents to voltage ramps and steps. The major action of depolarization and cooling was to accelerate forward transitions between the same two sets of adjacent closed states. The seven-state model provides a general mechanism to account for TRPM8 activation by membrane depolarization at two temperatures and can serve as a starting point for further investigations of multimodal TRP activation
    • 

    corecore