77 research outputs found

    Determinants of profitability in Spanish financial institutions. Comparing aided and non-aided entities

    Get PDF
    The last financial crisis has led to the greatest contribution of public funds ever made to Spanish banks. This paper studies why the need for support has been asymmetric, with not all of the institutions requiring aid. Based on profitability of assets (ROA), we determine using panel data econometric and logit response models the components of profit and loss accounts that generated profitability as well as the factors leading to some entities to ask for aid. The analyses show that before the beginning of the crisis there were significant differences between entities that needed aid and those that did not. The most profitable banks grounded their success in the traditional revenue components of financial institutions (such as margin on interest rates and commissions), as well as in revenues obtained from participated companies and extraordinary results. The model offers a tool to detect entities in difficulties in advance, reducing the financial and social costs of public interventions. The factors more impacting on profitability of Spanish institutions are also identifie

    Substituent Effects in the Noncovalent Bonding of SO2 to Molecules containing a Carbonyl Group. The Dominating Role of the Chalcogen Bond

    Get PDF
    The SO2 molecule is paired with a number of carbonyl-containing molecules, and the properties of the resulting complexes are calculated by high-level ab initio theory. The global minimum of each pair is held together primarily by a S···O chalcogen bond wherein the lone pairs of the carbonyl O transfer charge to the π* antibonding SO orbital, supplemented by smaller contributions from weak CH···O H-bonds. The binding energies vary between 4.2 and 8.6 kcal/mol, competitive with even some of the stronger noncovalent forces such as H-bonds and halogen bonds. The geometrical arrangement places the carbonyl O atom above the plane of the SO2 molecule, consistent with the disposition of the molecular electrostatic potentials of the two monomers. This S···O bond differs from the more commonly observed chalcogen bond in both geometry and origin. Substituents exert their influence via inductive effects that change the availability of the carbonyl O lone pairs as well as the intensity of the negative electrostatic potential surrounding this atom

    Angioedema severity and impact on quality of life: Chronic histaminergic angioedema versus chronic spontaneous urticaria

    Get PDF
    Histamine-mediated angioedema is the most frequent form of angioedema. It is classified as idiopathic histaminergic acquired angioedema (IH-AAE)1 when allergies and other causes have been excluded and a positive treatment response to antihistamines, corticosteroids, or omalizumab has been reported. Idiopathic histaminergic acquired angioedema may occur in isolation, when it is termed chronic histaminergic angioedema (CHA), or it may be associated with wheals in chronic spontaneous urticaria angioedema (CSU-AE). The term CHA is equivalent to IH-AAE and mast cell-mediated angioedema. However, this term reflects the chronic and recurrent course of the disease. Therefore, we propose that the term CHA be internationally discussed in the following guidelines. Chronic spontaneous urticaria is classically characterized by the presence of recurrent episodes of wheals (hives) with or without angioedema for at least 6 weeks.2 Chronic histaminergic angioedema is typically considered a subtype of CSU without wheals. However, a recent study3 found several features that differentiate CHA from CSU, which suggests that CHA is a separate entity. Quality of life (QoL) studies specifically for CHA patients have not been performed, and their QoL has been assessed only in the context of CSU-AE

    Effects of Charge and Substituent on the S∙∙∙N Chalcogen Bond

    Get PDF
    Neutral complexes containing a S···N chalcogen bond are compared with similar systems in which a positive charge has been added to the S-containing electron acceptor, using high-level ab initio calculations. The effects on both XS···N and XS+···N bonds are evaluated for a range of different substituents X = CH3, CF3, NH2, NO2, OH, Cl, and F, using NH3 as the common electron donor. The binding energy of XMeS···NH3 varies between 2.3 and 4.3 kcal/mol, with the strongest interaction occurring for X = F. The binding is strengthened by a factor of 2–10 in charged XH2S+···NH3 complexes, reaching a maximum of 37 kcal/mol for X = F. The binding is weakened to some degree when the H atoms are replaced by methyl groups in XMe2S+···NH3. The source of the interaction in the charged systems, like their neutral counterparts, is derived from a charge transfer from the N lone pair into the σ*(SX) antibonding orbital, supplemented by a strong electrostatic and smaller dispersion component. The binding is also derived from small contributions from a CH···N H-bond involving the methyl groups, which is most notable in the weaker complexes
    corecore