120 research outputs found

    Ex vivo correction of selenoprotein N deficiency in rigid spine muscular dystrophy caused by a mutation in the selenocysteine codon

    Get PDF
    Premature termination of translation due to nonsense mutations is a frequent cause of inherited diseases. Therefore, many efforts were invested in the development of strategies or compounds to selectively suppress this default. Selenoproteins are interesting candidates considering the idiosyncrasy of the amino acid selenocysteine (Sec) insertion mechanism. Here, we focused our studies on SEPN1, a selenoprotein gene whose mutations entail genetic disorders resulting in different forms of muscular diseases. Selective correction of a nonsense mutation at the Sec codon (UGA to UAA) was undertaken with a corrector tRNASec that was engineered to harbor a compensatory mutation in the anticodon. We demonstrated that its expression restored synthesis of a full-length selenoprotein N both in HeLa cells and in skin fibroblasts from a patient carrying the mutated Sec codon. Readthrough of the UAA codon was effectively dependent on the Sec insertion machinery, therefore being highly selective for this gene and unlikely to generate off-target effects. In addition, we observed that expression of the corrector tRNASec stabilized the mutated SEPN1 transcript that was otherwise more subject to degradation. In conclusion, our data provide interesting evidence that premature termination of translation due to nonsense mutations is amenable to correction, in the context of the specialized selenoprotein synthesis mechanism

    Human first-trimester chorionic villi have a myogenic potential

    Get PDF
    First-trimester chorionic-villi-derived cells (FTCVs) are the earliest fetal material that can be obtained for prenatal diagnosis of fetal disorders such as Duchenne muscular dystrophy (DMD). DMD is a devastating X-linked disorder characterized by the absence of dystrophin at the sarcolemma of muscle fibers. Currently, a limited number of treatment options are available for DMD, although cell therapy is a promising treatment strategy for muscle degeneration in DMD patients. A novel candidate source of cells for this approach is FTCVs taken between the 9th and 11th weeks of gestation. FTCVs might have a higher undifferentiated potential than any other tissue-derived cells because they are the earliest fetal material. We examined the expression of mesenchymal stem cell and pluripotent stem cell markers in FTCVs, in addition to their myogenic potential. FTCVs expressed mesenchymal stem cell markers and Nanog and Sox2 transcription factors as pluripotent stem cell markers. These cells efficiently differentiated into myotubes after myogenic induction, at which point Nanog and Sox2 were down-regulated, whereas MyoD, myogenin, desmin and dystrophin were up-regulated. To our knowledge, this is the first demonstration that FTCVs can be efficiently directed to differentiate in vitro into skeletal muscle cells that express dystrophin as the last stage marker of myogenic differentiation. The myogenic potential of FTCVs reveals their promise for use in cell therapy for DMD, for which no effective treatment presently exists

    Increased Muscle Stress-Sensitivity Induced by Selenoprotein N Inactivation in Mouse: A Mammalian Model for SEPN1-Related Myopathy

    Get PDF
    Selenium is an essential trace element and selenoprotein N (SelN) was the first selenium-containing protein shown to be directly involved in human inherited diseases. Mutations in the SEPN1 gene, encoding SelN, cause a group of muscular disorders characterized by predominant affection of axial muscles. SelN has been shown to participate in calcium and redox homeostasis, but its pathophysiological role in skeletal muscle remains largely unknown. To address SelN function in vivo, we generated a Sepn1-null mouse model by gene targeting. The Sepn1−/− mice had normal growth and lifespan, and were macroscopically indistinguishable from wild-type littermates. Only minor defects were observed in muscle morphology and contractile properties in SelN-deficient mice in basal conditions. However, when subjected to challenging physical exercise and stress conditions (forced swimming test), Sepn1−/− mice developed an obvious phenotype, characterized by limited motility and body rigidity during the swimming session, as well as a progressive curvature of the spine and predominant alteration of paravertebral muscles. This induced phenotype recapitulates the distribution of muscle involvement in patients with SEPN1-Related Myopathy, hence positioning this new animal model as a valuable tool to dissect the role of SelN in muscle function and to characterize the pathophysiological process

    Statistical Analysis of Readthrough Levels for Nonsense Mutations in Mammalian Cells Reveals a Major Determinant of Response to Gentamicin

    Get PDF
    The efficiency of translation termination depends on the nature of the stop codon and the surrounding nucleotides. Some molecules, such as aminoglycoside antibiotics (gentamicin), decrease termination efficiency and are currently being evaluated for diseases caused by premature termination codons. However, the readthrough response to treatment is highly variable and little is known about the rules governing readthrough level and response to aminoglycosides. In this study, we carried out in-depth statistical analysis on a very large set of nonsense mutations to decipher the elements of nucleotide context responsible for modulating readthrough levels and gentamicin response. We quantified readthrough for 66 sequences containing a stop codon, in the presence and absence of gentamicin, in cultured mammalian cells. We demonstrated that the efficiency of readthrough after treatment is determined by the complex interplay between the stop codon and a larger sequence context. There was a strong positive correlation between basal and induced readthrough levels, and a weak negative correlation between basal readthrough level and gentamicin response (i.e. the factor of increase from basal to induced readthrough levels). The identity of the stop codon did not affect the response to gentamicin treatment. In agreement with a previous report, we confirm that the presence of a cytosine in +4 position promotes higher basal and gentamicin-induced readthrough than other nucleotides. We highlight for the first time that the presence of a uracil residue immediately upstream from the stop codon is a major determinant of the response to gentamicin. Moreover, this effect was mediated by the nucleotide itself, rather than by the amino-acid or tRNA corresponding to the −1 codon. Finally, we point out that a uracil at this position associated with a cytosine at +4 results in an optimal gentamicin-induced readthrough, which is the therapeutically relevant variable

    Readthrough of Premature Termination Codons in the Adenomatous Polyposis Coli Gene Restores Its Biological Activity in Human Cancer Cells

    Get PDF
    The APC tumor suppressor gene is frequently mutated in human colorectal cancer, with nonsense mutations accounting for 30% of all mutations in this gene. Reintroduction of the WT APC gene into cancer cells generally reduces tumorigenicity or induces apoptosis. In this study, we explored the possibility of using drugs to induce premature termination codon (PTC) readthrough (aminoglycosides, negamycin), as a means of reactivating endogenous APC. By quantifying the readthrough of 11 nonsense mutations in APC, we were able to identify those giving the highest levels of readthrough after treatment. For these mutations, we demonstrated that aminoglycoside or negamycin treatment led to a recovery of the biological activity of APC in cancer cell lines, and showed that the level of APC activity was proportional to the level of induced readthrough. These findings show that treatment with readthrough inducers should be considered as a potential strategy for treating cancers caused by nonsense mutations APC gene. They also provide a rational basis for identifying mutations responsive to readthrough inducers

    Diseased muscles that lack dystrophin or laminin-α2 have altered compositions and proliferation of mononuclear cell populations

    Get PDF
    BACKGROUND: Multiple types of mononucleate cells reside among the multinucleate myofibers in skeletal muscles and these mononucleate cells function in muscle maintenance and repair. How neuromuscular disease might affect different types of muscle mononucleate cells had not been determined. In this study, therefore, we examined how two neuromuscular diseases, dystrophin-deficiency and laminin-α2-deficiency, altered the proliferation and composition of different subsets of muscle-derived mononucleate cells. METHODS: We used fluorescence-activated cell sorting combined with bromodeoxyuridine labeling to examine proliferation rates and compositions of mononuclear cells in diseased and healthy mouse skeletal muscle. We prepared mononucleate cells from muscles of mdx (dystrophin-deficient) or Lama2(-/- )(laminin-α2-deficient) mice and compared them to cells from healthy control muscles. We enumerated subsets of resident muscle cells based on Sca-1 and CD45 expression patterns and determined the proliferation of each cell subset in vivo by BrdU incorporation. RESULTS: We found that the proliferation and composition of the mononucleate cells in dystrophin-deficient and laminin-α2-deficient diseased muscles are different than in healthy muscle. The mdx and Lama2(-/- )muscles showed similar significant increases in CD45(+ )cells compared to healthy muscle. Changes in proliferation, however, differed between the two diseases with proliferation increased in mdx and decreased in Lama2(-/- )muscles compared to healthy muscles. In particular, the most abundant Sca-1(-)/CD45(- )subset, which contains muscle precursor cells, had increased proliferation in mdx muscle but decreased proliferation in Lama2(-/- )muscles. CONCLUSION: The similar increases in CD45(+ )cells, but opposite changes in proliferation of muscle precursor cells, may underlie aspects of the distinct pathologies in the two diseases

    Transverse tubule remodelling: a cellular pathology driven by both sides of the plasmalemma?

    Get PDF
    Transverse (t)-tubules are invaginations of the plasma membrane that form a complex network of ducts, 200–400 nm in diameter depending on the animal species, that penetrates deep within the cardiac myocyte, where they facilitate a fast and synchronous contraction across the entire cell volume. There is now a large body of evidence in animal models and humans demonstrating that pathological distortion of the t-tubule structure has a causative role in the loss of myocyte contractility that underpins many forms of heart failure. Investigations into the molecular mechanisms of pathological t-tubule remodelling to date have focused on proteins residing in the intracellular aspect of t-tubule membrane that form linkages between the membrane and myocyte cytoskeleton. In this review, we shed light on the mechanisms of t-tubule remodelling which are not limited to the intracellular side. Our recent data have demonstrated that collagen is an integral part of the t-tubule network and that it increases within the tubules in heart failure, suggesting that a fibrotic mechanism could drive cardiac junctional remodelling. We examine the evidence that the linkages between the extracellular matrix, t-tubule membrane and cellular cytoskeleton should be considered as a whole when investigating the mechanisms of t-tubule pathology in the failing heart
    corecore