21 research outputs found

    Semitoric integrable systems on symplectic 4-manifolds

    Get PDF
    Let M be a symplectic 4-manifold. A semitoric integrable system on M is a pair of real-valued smooth functions J, H on M for which J generates a Hamiltonian S^1-action and the Poisson brackets {J,H} vanish. We shall introduce new global symplectic invariants for these systems; some of these invariants encode topological or geometric aspects, while others encode analytical information about the singularities and how they stand with respect to the system. Our goal is to prove that a semitoric system is completely determined by the invariants we introduce

    Hamiltonian dynamics and spectral theory for spin-oscillators

    Full text link
    We study the Hamiltonian dynamics and spectral theory of spin-oscillators. Because of their rich structure, spin-oscillators display fairly general properties of integrable systems with two degrees of freedom. Spin-oscillators have infinitely many transversally elliptic singularities, exactly one elliptic-elliptic singularity and one focus-focus singularity. The most interesting dynamical features of integrable systems, and in particular of spin-oscillators, are encoded in their singularities. In the first part of the paper we study the symplectic dynamics around the focus-focus singularity. In the second part of the paper we quantize the coupled spin-oscillators systems and study their spectral theory. The paper combines techniques from semiclassical analysis with differential geometric methods.Comment: 32 page

    Geometry of integrable dynamical systems on 2-dimensional surfaces

    Full text link
    This paper is devoted to the problem of classification, up to smooth isomorphisms or up to orbital equivalence, of smooth integrable vector fields on 2-dimensional surfaces, under some nondegeneracy conditions. The main continuous invariants involved in this classification are the left equivalence classes of period or monodromy functions, and the cohomology classes of period cocycles, which can be expressed in terms of Puiseux series. We also study the problem of Hamiltonianization of these integrable vector fields by a compatible symplectic or Poisson structure.Comment: 31 pages, 12 figures, submitted to a special issue of Acta Mathematica Vietnamic

    Moduli spaces of toric manifolds

    Get PDF
    We construct a distance on the moduli space of symplectic toric manifolds of dimension four. Then we study some basic topological properties of this space, in particular, path-connectedness, compactness, and completeness. The construction of the distance is related to the Duistermaat-Heckman measure and the Hausdorff metric. While the moduli space, its topology and metric, may be constructed in any dimension, the tools we use in the proofs are four-dimensional, and hence so is our main result.Comment: To appear in Geometriae Dedicata, minor changes to previous version, 19 pages, 6 figure

    Asymptotic distribution of quasi-normal modes for Kerr-de Sitter black holes

    Full text link
    We establish a Bohr-Sommerfeld type condition for quasi-normal modes of a slowly rotating Kerr-de Sitter black hole, providing their full asymptotic description in any strip of fixed width. In particular, we observe a Zeeman-like splitting of the high multiplicity modes at a=0 (Schwarzschild-de Sitter), once spherical symmetry is broken. The numerical results presented in Appendix B show that the asymptotics are in fact accurate at very low energies and agree with the numerical results established by other methods in the physics literature. We also prove that solutions of the wave equation can be asymptotically expanded in terms of quasi-normal modes; this confirms the validity of the interpretation of their real parts as frequencies of oscillations, and imaginary parts as decay rates of gravitational waves.Comment: 66 pages, 6 figures; journal version (to appear in Annales Henri Poincar\'e

    Symplectic invariants near hyperbolic-hyperbolic points

    No full text
    International audienceWe construct symplectic invariants for Hamiltonian integrable systems of 2 degrees of freedom possessing a fixed point of hyperbolic-hyperbolic type. These invariants consist in some signs which determine the topology of the critical Lagrangian fibre, together with several Taylor series which can be computed from the dynamics of the system.We show how these series are related to the singular asymptotics of the action integrals at the critical value of the energy-momentum map. This gives general conditions under which the non-degeneracy conditions arising in the KAM theorem (Kolmogorov condition, twist condition) are satisfied. Using this approach, we obtain new asymptotic formulae for the action integrals of the C. Neumann system. As a corollary, we show that the Arnold twist condition holds for generic frequencies of this syste
    corecore