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MODULI SPACES OF TORIC MANIFOLDS
A. PELAYO, A. R. PIRES, T. S. RATIU, AND S. SABATINI

ABSTRACT. We construct a distance on the moduli space of symplectic toric manifolds of
dimension four. Then we study some basic topological properties of this space, in particular,
path-connectedness, compactness, and completeness. The construction of the distance is
related to the Duistermaat-Heckman measure and the Hausdorff metric. While the moduli
space, its topology and metric, may be constructed in any dimension, the tools we use in
the proofs are four-dimensional, and hence so is our main result.

1. INTRODUCTION

A toric integrable system p = (p1,...,1n): M — R™ is an integrable system on a con-
nected symplectic 2n-dimensional manifold (M,w) in which all the flows generated by the
Wi, © = 1,...,n, are periodic of a fixed period. That is, there is a Hamiltonian action of a
torus T of dimension n on M with momentum map p. We will assume that this action is
effective and that M is compact. In this case, the quadruple (M,w, T, i) is often called a
symplectic toric manifold of dimension 2n, to emphasize the connection with toric varieties
(in fact, all symplectic toric manifolds are toric varieties, e.g., see Remark 2.7 and [8], [10]).

The goal of the paper is to construct natural topologies on moduli spaces of compact
symplectic toric 4-manifolds under natural equivalence relations and study some of their
basic topological properties.

Throughout most of this paper, we will assume that n = 2, but several definitions and
statements hold in more generality.

1.1. Conventions. Let, throughout this paper, T := T" denote the n-dimensional standard

torus
n times

—N—

T"=T!x..-x T,
i.e., the Cartesian product of n copies of the circle T equipped with the product operation.
Denote by t the Lie algebra Lie(T) of T and by t* the dual of t. Strictly speaking, the

momentum map p of the Hamiltonian action of T on a manifold M is a map M — t*.
However, the presentation is simpler, if from the beginning we consider this map as a map

Date: March 26, 2013.

1991 Mathematics Subject Classification. MSC 53D20 and MSC 53D05.

Key words and phrases. Toric manifold and Delzant polytope and Moduli space and Metric space.

AP was partly supported by NSF Grants DMS-0965738 and DMS-0635607, an NSF CAREER Award,
a Leibniz Fellowship, Spanish Ministry of Science Grant MTM 2010-21186-C02-01, and by the Spanish
National Research Council.

ARP was partly supported by an AMS-Simons Travel Grant.

TSR was partly supported by a MSRI membership, Swiss NSF grant 200021-140238, a visiting position at
THES, and by the government grant of the Russian Federation for support of research projects implemented
by leading scientists, Lomonosov Moscow State University under the agreement No. 11.G34.31.0054.

1


http://arxiv.org/abs/1207.0092v2

u: M — R"™ How to do this is a standard, but not canonical, procedure. Choose an
epimorphism E: R — T, for instance,  +— €2"V~1*. This Lie group epimorphism has
discrete center Z and the inverse of the corresponding Lie algebra isomorphism is given by

Lie(T') > Z — L € R. Thus, for T" = (T')", we get the non-canonical isomorphism
between the corresponding commutative Lie algebras
Lie(T") =t > 0 —> ! eR"
ie = — —e
8:@ 2T k ’

where ey, is the k' element in the canonical basis of R”. Choosing an inner product (-, -) on
t, we obtain an isomorphism t — t*, and hence taking its inverse and composing it with the
isomorphism t — R™ described above, we get an isomorphism J : t* — R”. In this way, we
obtain a momentum map p = ug: M — R™.

If (M,w) is a symplectic manifold, denote by Sympl(M) the group of symplectic diffeo-
morphisms of M.

1.2. The moduli space My. With the conventions in Section [T where T and the iden-
tification J: t* — R" are fired, we next define the moduli space of toric manifolds. Let
(M,w,T,pp: M — R") and (M’ ', T,p/: M — R™) be symplectic toric manifolds, with
effective symplectic actions p: T — Sympl(M,w) and p': T — Sympl(M’ w’). These two
symplectic toric manifolds are isomorphic if there exists an equivariant symplectomorphism
w: M — M’ (i.e., ¢ is a diffetomorphism satisfying ¢*w’ = w which intertwines the T actions)
such that ;' o ¢ = u (see also [I, Definition 1.1.16]). We denote by My := M3 the moduli
space (the set of equivalence classes) of 2n-dimensional symplectic toric manifolds under
this equivalence relation. The motivation for introducing this moduli space comes from the
following seminal result, due to Delzant [§].

Theorem 1.1 ([8, Theorem 2.1]). Let (M,w,T,u) and (M',w', T, ') be two toric sym-
plectic manifolds. If (M) = u/'(M') then there exists an equivariant symplectomorphism
v: (M,w) — (M',w'") such that the following diagram

(M, w) = (M, )

|k

Id
(M) —— p/(M")
commautes.

The convexity theorem of Atiyah [2] and Guillemin-Sternberg [13] asserts that the image
of the momentum map is a convex polytope. In addition, if the action is toric (the acting
torus is precisely half the dimension of the manifold) the momentum image is a Delzant
polytope (see Section 2]). Let D denote the set of Delzant polytopes. As a consequence of
Theorem [I.1], the following map

(1) [(M,w, T, p1)] > Mg — p(M) € Dr,

is an injection. However, Delzant also shows how from a Delzant polytope it is possible to
reconstruct a symplectic toric manifold, thus implying that () is a bijection.
To simplify notations, we usually write (M, w, T, i) identifying the representative with its

equivalence class [(M,w, T, u)] in Mr.
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Remark 1.2. If we choose a different identification J': t* — R™ in Section [LI, then the
resulting moduli space M%’ is, in general, a set different from Mry. However, My and M%' are
in bijective correspondence by a map which preserves the structures that this paper deals
with (Section [[L4]). An alternative and equivalent approach to this convention is to define
Mt to be a space of pairs, where the second element of the pair involves the Lie algebra
identification. We shall use the first convention throughout the paper (see Section 2.2]).

Remark 1.3. Note that for every non-zero ¢ € R™ the equivalence class of (M,w,T, i) is
different from that of (M,w, T, u + ¢). We distinguish these two spaces since for general
Hamiltonian G-actions the constant ¢ is an important element of g*. Indeed, given a con-
nected Lie group G and a Hamiltonian G-space (M,w,G) with moment map p: M — g, if
@' M — gis a different choice of moment map for the G-action then p—p' = ¢ € [g,g]° C g%,
the annihilator of the commutator ideal of g, which coincides with H!'(g;R), the first Lie
algebra cohomology group (see for example [4, §26.2]).

1.3. The moduli space My. Following [18], we say that two symplectic toric manifolds
(M,w, T, ) and (M’ ', T, i) are weakly isomorphic if there exists an automorphism of the
torus h: T — T and an h-equivariant symplectomorphism ¢: M — M’, i.e., the following
diagram commutes:

*

p

(2) TxM ——s
(hvw)l %DL

/%

p

Tx M 2o M,
where p*(z,m) := p(x)(m) for all x € T, m € M, and similarly for p™.

We denote by Mt the moduli space of weakly isomorphic 2n-dimensional symplectic toric
manifolds (see Section 2.2 for more details).

Two weakly isomorphic toric manifolds (M,w, T, u) and (M’ ', T, i) are isomorphic if
and only if A in (2) is the identity and p' = p o .

1.4. Topologies and metrics. We consider the space of Delzant polytopes Dr and turn
it into a metric space by endowing it with the distance function given by the volume of the
symmetric difference

(Al AN Ag) U (AQ AN Al)
of any two polytopes.

The map () allows us to define a metric dr on My as the pullback of the metric defined
on Dr, thereby getting the metric space (Mr,dr). This metric induces a topology v on Mr
(so, by definition, it follows that (Mr, v) is a metrizable topological space).

Let AGL(n,Z) := GL(n,Z) x R™ be the group of affine transformations of R” given by

R"s>z+— Az +c e R",

where A € GL(n,Z) and ¢ € R". We say that two Delzant polytopes A; ang Ay are

AGL(n, Z)-equivalent if there exists a € AGL(n,Z) such that a(A;) = Ay. Let Dt be the
moduli space of Delzant polytopes relative to AGL(n, Z)-equivalence; we endow this space
with the quotient topology induced by the projection map

7: Dy — Dy ~ Dy/ AGL(n, Z).
3



As we shall see in Section 2.2] there exists a bijection W : m — @;r (in fact, it is induced
by ({)); thus My is also a topological space, with topology v induced by W. We denote this
topological space by (Mr, V).

1.5. Main Theorem. Let B(R") be the o-algebra of Borel sets of R™, the map
A %(Rn) — RZO U {OO}

be the Lebesgue measure on R, and B'(R™) C B(R"™) the subset of Borel sets with finite
Lebesgue measure. Define

(3) d(A, B) == |Ixa — xslly1
where yo: R" — R denotes the characteristic function of C' € B’'(R™). This extends the
distance function defined above on Dr, but it is not a metric on B’(R™). Identifying the sets
A, B € B'(R"™) for which d(A, B) = 0, we obtain a metric on the resulting quotient space of
B'(R™) (see Section 2.1] for details).

Let C be the space of convex compact subsets of R? with positive Lebesgue measure, &
the empty set, and

C:=Cu{g}.

Then € equipped with the distance function d in (3) is a metric space.

We prove the following theorem.

Theorem 1.4. Let My and m be the moduli spaces of toric four-dimensional manifolds,
under isomorphisms and equivariant isomorphisms, respectively. Then:
(a) (m, V) is path-connected;
(b) (Mr,dr) is neither locally compact nor a complete metric space. Its completion can
be identified with the metric space (é, d) in the following sense: identifying (Mr, dr)
with (Dr,d) via (@), the completion of (Dr,d) is (€, d).

Remark 1.5. Metric spaces are Tychonoff (that is, completely regular and Hausdorff), there-
fore My is Tychonoff. The Stone-Cech compactification [29, 5] can be applied to Tychonoff
spaces. The Stone-Cech compactification, in general, gives rise to a compactified space which
is Hausdorff and normal. Hence My admits a Hausdorff compactification.

Remark 1.6. Theorem [L4] positively answers the case 2n = 4 of Problem 2.42 in [26]. We
do not know if the analogous statement to Theorem [[.4] holds in dimensions greater than or
equal to six. Note that the constructions of the moduli spaces Mt and Mt do not depend
on dimension.

Structure of the paper. In Section 2] we introduce the topological spaces we are going
to work with, involving Delzant polytopes and symplectic toric manifolds, under certain
equivalence relations. The ingredient that allows us to relate these two categories of spaces
is the Delzant classification theorem (Theorem [2.4]).

Section [J starts with a detailed analysis of how to construct Delzant polygons (i.e., poly-
topes of dimension 2) following a simple recursive procedure presented in [18]. This recipe
is a main technical tool for the present paper; no such method is known for polytopes of

dimension greater than or equal to three. The remainder of this section and Section [l are
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devoted to proving the path-connectedness and metric properties of the space of Delzant
polygons (or rather, a natural quotient of it); the main theorem of the paper is implied by
the results proven in these sections.

Finally, in Section [3, several open problems are presented. Appendix [6] contains a brief
review of the polytope terms and results we use in the paper.

Acknowledgements. We would like to thank the anonymous referee who made many useful
comments and clarifications which have significantly improved an earlier version of the paper.
AP is grateful to Helmut Hofer for discussions and support. He also thanks Isabella Novik
for discussions concerning general polytope theory, and Problem [5.4] during a visit to the
University of Washington in 2010. The authors are also grateful to Victor Guillemin and
Allen Knutson for helpful advice.

2. DELZANT POLYTOPES AND TORIC MANIFOLDS

2.1. A metric on the space of Delzant polytopes Dr. In this paper we are interested
only in convex full dimensional polytopes, which we will simply call polytopes. We refer to
Appendix [6] for the basic terminology and results on polytopes.

Definition 2.1. (following [4]) A convex polytope A in R" is a Delzant polytope if it is
simple, rational and smooth:

(i) A is simple if there are exactly n edges meeting at each vertex v € V/;
(ii) A is rational if for every vertex v € V', the edges meeting at v are of the form v + tu;,
where t > 0 and u; € Z";
(ili) A vertex v € V is smooth if the edges meeting at v are of the form v + tu;, t > 0,
where the vectors ug, ..., u, can be chosen to be a Z basis of Z". A is smooth if every
vertex v € V' is smooth.

Let Dt denote the space of Delzant polytopes in R™, where n = dimT. We construct a
topology on Dr, coming from a metric.
Recall that the symmetric difference of two subsets A, B C R" is

AAB := (AN B)U (B~ A).

Let ®B(R") be the o-algebra of Borel sets of R”, and let A: B(R") — R> U {c0} be the
Lebesgue measure on R".

Definition 2.2. Let B'(R™) C B(R") be the Borel sets with finite Lebesgue measure. Define
d: %/(Rn) X %/(Rn) — RZO
by

n

() A4, B) = MASE) = [ a = xal A = a = xalhs.

where x¢o: R™ — R denotes the characteristic function of C' € B’(R").

Note that d is symmetric and satisfies the triangle inequality, since

AAC € (AAB) U (BAQ).
5



However, in this space, d(A, B) = 0 does not necessarily imply that A = B. We introduce
in B'(R™) the equivalence relation ~, where

A~ B ifand only if A (AAB) = 0.

Then the induced map, also denoted by d: (B'(R")/ ~) x (B'(R™)/ ~) — R>q, is a metric
(associated to the L! norm).
Since A, B € Dy C B/(R") and A ~ B implies A = B, it follows that

(Dr/ ~) =Dy

and thus the restriction of d to Dt is a metric. Hence (Dr,d) is a metric space, endowed
with the topology induced by d.

2.2. Symplectic toric manifolds. We review below the ingredients from the theory of
symplectic toric manifolds which we need for this paper, in particular the Delzant classifica-
tion theorem. We follow the conventions in Section [L.I]

A symplectic manifold (M, w) is a pair consisting of a smooth manifold M and a symplectic
form w, i.e., a non-degenerate closed 2-form on M. Suppose that the n-dimensional torus T
acts on (M, w) symplectically (i.e., by diffeomorphisms which preserve the symplectic form).
The action T x M — M of T on M is denoted by (t,m) — t-m.

A vector X in the Lie algebra t generates a smooth vector field X,; on M, called the
infinitesimal generator, defined by

Xnp(m) = 4 exp(tX) - m,
dt],_,
where exp: t — T is the exponential map of Lie theory and m € M. We write the contraction
1-form as tx,,w = w(Xy, ) € QY (M).
Let (-,-) : t* x t = R be the duality pairing. The T-action on (M,w) is said to be
Hamiltonian if there exists a smooth T-invariant map p: M — t*, called the momentum
map, such that for all X € t we have

(5) LxyW = d(/La X>

As defined in Section [l a symplectic toric manifold (M,w, T, ) is a symplectic compact
connected manifold (M, w) of dimension 2n endowed with an effective (i.e., the intersection
of all isotropy subgroups is the identity) Hamiltonian action of an n- dimensional torus T
admitting a momentum map p : M — t*. With the conventions of Section [LLI, the map
p: M — £ gives rise (in a non-canonical way) to a map M — t* — R" which, for simplicity,
is also denoted by pu: M — R™.

Definition 2.3. Let (M,w, T, ) and (M’, ', T, /') be symplectic toric manifolds, with ef-
fective symplectic actions p: T — Sympl(M,w) and p': T — Sympl(M’,w'). We say that
(M,w, T, p) and (M’ ', T, i) are isomorphicﬁ if there exists an equivariant symplectomor-
phism ¢: M — M’ such that ' o ¢ = p.

We denote by Myt the moduli space of 2n-dimensional isomorphic toric manifolds.

The following is an influential theorem by T. Delzant ([g]).

In the literature, these manifolds are usually called equivariantly symplectomorphic. However, the same
name is sometimes also used for the notion in Definition 9] and so we use different names to distinguish
the two.

6



Theorem 2.4 (Delzant’s Theorem). There is a one-to-one correspondence between isomor-
phism classes of symplectic toric manifolds and Delzant polytopes, given by:

(6) (M, w, T, u)] > Mg — u(M) € Dr.
As a consequence of this bijection, we can endow Mt with the pullback metric.

Definition 2.5. Let My = (M;,wy, T, 1) and My = (Ms, ws, T, i2) be two symplectic toric
manifolds. We define dr(M;, Ms) to be the Lebesgue measure of the symmetric difference
of pui (M) and pip(Ma).

Remark 2.6. Note that the metric dr defined above is related to the Duistermaat-Heckman
measure ([9]). Indeed, for a symplectic toric manifold M with momentum map g, the induced
Duistermaat-Heckman measure of a Borel set U C R" ~ t* is given by

mpu(U) = AU N p(M)).

Remark 2.7. T. Delzant [8, Section 5] observed that a Delzant polytope gives rise to a
fan (“éventail” in French), and that the symplectic toric manifold with associated Delzant
polytope A is T-equivariantly diffeomorphic to the toric variety defined by the fan.

The toric variety is an n-dimensional complex analytic manifold, and the action of the
real torus T on it has an extension to a complex analytic action on the complexification T¢
of T.

Remark 2.8. In dimension 4, there is another class of integrable systems which is classified:
those called semitoric [24] 25]. The classification of almost toric systems is begun in [27].

Now we introduce a weaker notion of equivalence between toric manifolds, following [18§].

Definition 2.9. Two symplectic toric manifolds (M,w, T, u) and (M’ ', T, i') are weakly
1somorphic if there exists an automorphism of the torus h: T — T and an h-equivariant
symplectomorphism p: M — M’ i.e., the following diagram commutes:

(7) Tx M LM

(hvw)l wl

Tx M 2 M

where p*(z,m) := p(x)(m) for all z € T, m € M, and similarly for p*. We denote by Mr
the moduli space of weakly isomorphic 2n-dimensional toric manifolds.

It is easy to see that two weakly isomorphic toric manifolds are isomorphic if h is the
identity and u' o p = pu.

Recall that the automorphism group of the torus T = R"/(27Z)" is given by GL(n,Z);
thus the automorphism h is represented by a matrix A € GL(n,Z). Let AGL(n,Z) be the
group of affine transformations of R™ given by

(8) x— Az + ¢,

where A € GL(n,Z) and x,c € R". Two sets are AGL(n,Z)-congruent if one is the image

of the other by an affine transformation (8). We have the following result.
7



Proposition 2.10. ([18, Proposition 2.3 (2)]) Two symplectic toric manifolds (M,w, T, 1)
and (M',w', T, 1) are weakly isomorphic if and only if their momentum map images are
AGL(n, Z)-congruent.

Thus, if we define @} to be the moduli space of AGL(n,Z)-equivalent (or, congruent)
Delzant polytopes,

Dy := D/ AGL(n, Z),

Proposition 210/ implies that the isomorphism in (@) descends to an isomorphism
(9) My —s Dr.

Let m: D —>§']/1‘ be the projection map; we endow @;r with the quotient topology 5
We endow My with the topology v induced by the isomorphism ([)).

3. CONNECTEDNESS OF THE SPACE (Dr, d)

3.1. Classification of Delzant polygons in R2 We introduce now the definitions of
rational length and corner chopping of size ¢, which will be used in the classification of the
Delzant polytopes in R2.

Definition 3.1. (following [I8, 2.4 and 2.11])
(i) The rational length of an interval I of rational slope in R™ is the unique number
[ = length([I) such that the interval is AGL(n, Z)-congruent to an interval of length

[ on a coordinate axis.
(ii) Let A be a Delzant polytope in R™ and v a vertex of A. Let

(o4t | 0<t <0}

be the set of edges emanating from v, where the uq,...,u, generate the lattice Z"
and ¢; = length(u;) (as defined above in (i)).

For € > 0 smaller than the ¢;’s, the corner chopping of size € of A at v is the
polytope A’ obtained from A by intersecting it with the half space

{v+tiug + -+ tgu, |G+ +t, > e}

FIGURE 1. A corner chopping of size ¢.

In R?, all Delzant polygons can be obtained by a recursive recipe, which can be found in

[18, Lemma 2.16] and is recalled below.
8



Lemma 3.2. (see [11], Sec. 2.5 and Notes to Chapter 2) The following hold:

(1) Any Delzant polygon A C R? with three edges is AGL(2,Z)-congruent to the Delzant
triangle Ay for a unique X > 0 (Ezample[33).

(2) For any Delzant polygon A C R? with 4+ s edges, where s is a non-negative integer,
there exist positive numbers a > b > 0, an integer 0 < k < 2a/b, and positive
numbers e1,...,es, such that A is AGL(2,Z)-congruent to a Delzant polygon that
is obtained from the Hirzebruch trapezoid H,py (see Examplel[3.3) by a sequence of
corner choppings of sizes €1,. .., €.

=

slope = —

Y Y

FIGURE 2. The Delzant triangle A, and the Hirzebruch trapezoid Hgy .

Example 3.3. Figure [2 shows the Delzant triangle Ay and the Hirzebruch trapezoid H, .
The Delzant triangle,

AA Z:{($1,$2)€R2 ‘ 120, 290 20, ZL’l—l—[L’QS)\},

is the momentum map image of the standard T? action on CP? endowed with the Fubini-
Study symplectic form multiplied by .
The Hirzebruch trapezoid,

Ha,b,k = {(:L’l,l’g) c R?

b b
_§§x2§§, nglga—kxa},

is the momentum map image of the standard toric action on a Hirzebruch surface.

Here, b is the height of the trapezoid, a is its average width, and £ > 0 is a non-negative
integer such that the right edge has slope —1/k or is vertical if k& = 0. Moreover a and b
have to satisfy a > b and a — kg > 0.

3.2. Proof of Theorem [I.4] (a). Recall that (Dr,d) is the space of Delzant polytopes in
R? together with the distance function given by the area of the symmetric difference and

that Dr is the quotient space Dr/AGL(2,Z) with the quotient topology 8, induced by the
quotient map w: Dy — Dr.

In order to prove Theorem [[4] (a), given the isomorphism ([, it is enough to prove the
following statement.

Theorem 3.4. The space (ﬁy,g) is path-connected.

Proof. Let 8 C Dt be the subset that contains all Delzant triangles Ay for A € RT, all
Hirzebruch trapezoids H,px with a,b € R such that a > b > 0 and k£ > 2a/b a non-negative
integer, and also all Delzant polygons obtained from Hirzebruch trapezoids by a sequence
of corner choppings (cf. Lemma B.2). Endow 8 C (Dr,d) with the subspace topology. We

will prove that 8 is path-connected in Drp. In fact, by Lemma B.2 we know that every
9



element of Dt has a representative in 8. Hence, given [F], [P1] € Dy with representatives
Py, P, € 8, if we prove that there exists a continuous path 7: [0,1] — 8 such that v(0) = P
and (1) = Py, by the continuity of 7|s: 8 — D, it follows that there exists a continuous
path mo~: [0,1] = Dy connecting [Fy] to [P], thus proving that Dy is path-connected.

First of all, note that the intuitive paths from a Delzant polygon P to a translation of P
or a scaling of P by a positive factor (or a composition of the two) are clearly continuous
with respect to the topology induced by d. Furthermore, if P € 8 then the entire path also
lies in 8. The same holds when moving an edge parallel to itself without changing the total
number of edges (see Figure []).

F1GURE 3. Moving an edge parallel to itself.

In particular, all Delzant triangles A, are connected by a path in 8 and so are the Hirze-
bruch trapezoids H,x, for each fixed k.

Secondly, if P. is obtained from P by a corner chopping of size ¢ at a vertex v € P, then
P and P. are connected by a continuous path in Dr; the path is simply given by

~v:[0,1] = Dy with v(t) := P..
Thus any Delzant polygon obtained from H,; by a sequence of corner choppings is con-
nected to H, 1 via a path in 8.

Third, we next show that for £ > 0 there is a continuous path between the Hirzebruch
trapezoid H, ;) and the Hirzebruch trapezoid H,p j+1, where now 0 < k,k + 1 < 2a/b. The
first half of the path connects Hgpx to the polygon H, , , by corner chopping at the top right
vertex, and the inverse of the second half connects H,p ;41 to H C’L,b,k by corner chopping at
the bottom right vertex (cf. Figure ).

slope =
1
------ / k+ A
slope = —% :

FIGURE 4. H,,, for k> 1 and H ;.

Note that H;,, is still a Delzant polygon; it suffices to check smoothness at the new

vertex, and indeed
—(k+1) k |
det { 1 1| = 1.
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Combining with previous observations, we conclude that all Hirzebruch trapezoids with k& > 0
lie in the same path-connected component of 8.

Finally, in order to conclude that 8 is path-connected, it remains to check that there exists
a continuous path between, for example, Hy yo and Ay. Let v: [0,1] — 8 be the path such
that:

(1) v(t) is the corner chopping of size At at the top right vertex of the square H) » ¢ for
0<t<l,
(11) 7(0) = H)\7)\70, and
(iii) v(1) := Ay.
The path v is continuous with respect to the topology on Dr. [ U

4. TOPOLOGY OF THE SPACE (Dr,d)

In this section we prove Theorem [[.4] (b). By the isomorphism ([)), it suffices to study the
topological properties of (Dr, d).
Let (%B'(R?)/ ~,d) be the metric space introduced in Section 211

Proposition 4.1. The space (Dr,d) is not complete.

Proof. We prove that (Dr, d) is not complete, by giving an example of a Cauchy sequence in
(D1, d) which converges in (B8'(R?)/ ~,d) whose limit is not a smooth polytope, hence not
in Dy. For k # 1 consider the Hirzebruch surface H,x, and note that we can rewrite a as

a=c+ bk
= 5
where c is the length of the top facet. Then, the sequence
H%J’_%’b’k, n:1,2,3,...
is Cauchy, but its limit is a right angle triangle that is not Delzant (see Figure[B). O O

Remark 4.2. Note that (Dr,d) is also non-compact, since compact metric spaces are auto-
matically complete.

FIGURE 5. The vertex v is not smooth.

Let C C 9'(R?) be the space of convex compact subsets of R? with positive Lebesgue
measure. Note that if A, B € € and d(A, B) = 0 then A = B, and so d is a metric on C.
The same observations hold for P,, the space of convex 2-dimensional polygons in R?, and
Pg, the space of rational convex 2-dimensional polygons in R? (see Definition 21)). We have
the following inclusions of metric spaces:

(Dr,d) C (Pg,d) C (P, d) C (C,d).
11



As we will see in the proof of Theorem L7, all these inclusions are dense.
Let @ be the empty set, which clearly has zero Lebesgue measure, and define

C:=CuU®.
Thus € ¢ B'(R?) and (C,d) is a metric space. Observe that (C,d) C (€,d), where the

inclusion is a continuous map of metric spaces. With a similar argument
As before, we have the inclusions of metric spaces:

(Dr,d) C (Pg.d) C (P, d) C (€,d) C (C,d).

We will prove in Theorem [£.4] that (é, d) is complete. To do this, we need the following
lemma.

Lemma 4.3. Let A € B(R?) be conver and non-bounded. If N\(A) > 0, then \(A) = oo.

Proof. Consider two points p,q € A. By convexity of A, the straight line segment (pq
connecting p to q is contained in A. Since A\(A) > 0, there exists a point r € A not collinear
to p and q. Hence the whole triangle pqr is contained in A.

Let C be the circle inscribed in the triangle pqr, and {a, },en a sequence of points in A
such that ||a,|gz — oo. For each a,, there exists a diameter D,, of C' such that the triangle
T, C A with base D,, and third vertex a, is isosceles, which guarantees that A\(7},) — oo,
and so A(A) =oc0. O O

Theorem 4.4. (é, d) is a complete metric space and it is the completion of (C,d).

Proof. Let {A,},en be a Cauchy sequence in é, with A, convex. By definition of d (see
@), the sequence {xa, }nen is Cauchy in L'(R?). By completeness of L' (IR?), there exists a
function f € L'(R?) such that

Ixa, = fllg = 0.
Thus, there exists a subsequence x4, and a zero measure set £ C R? such that

X, (€) = f(x)
for all x € R?\ E. Let
A={z R\ E| f(z) = 1}
from the definitions it follows immediately that x4, () — xa(z) for all z € R* \ E and

X4, = Xallp — 0.

It is easy to see that A\(A) < oo, thus A € B'(R?). If A(A) = 0 we can take A to be &,
which belongs to €. Let us now assume that A(A) > 0; we prove that A is almost everywhere
equal to a convex compact subset of R%. Let A’ be the convex hull of A. Then, for any p € A’
there exists q,r € A such that

p=tq+ (1 —-t)r
for some t € [0,1]. Since q,r € A, there exists N € N such that for all [ > N

XA, (@) = X4, (r) =1,
that is, q,r € A,, for all [ > N. Since A, is convex for all n, this means that p € A,, for all
[ > N, which implies that

XA, () = xar ()
12



almost everywhere in A’ U (R? \ A) = R?. Hence
AMA'\ A) =0.
Now it is sufficient to observe that, since A’ is convex, its boundary 0A’ has Lebesgue

measure zero (see [20]), and since A’ is also convex with A\(A’) = A\(A4) < oo, by Lemma .3
it is bounded, hence compact. [J U

Before investigating what the completion of (Dr, d) is, we first prove an auxiliary result,
the content of which is related to resolving singularities on toric varieties (see Remark 2.7]
and [7]). Recall that a vector u € Z? is called primitive if, whenever u = kv for some k € Z
and v € Z2, then k = +1.

Lemma 4.5. Let A be a simple rational polytope in R? that fails to be smooth only at one
vertex p: the primitive vectors u,v € Z* which direct the edges at p do not form a Z-basis of

Z2. Then there is a simple rational polytope A with at most |det [uv]| — 1 more edges than
A that is a smooth polytope and is equal to A except in a neighborhood of p.

Proof. Let uw = (a,b) and v = (¢,d). We claim that there is always a matrix A € GL(2,%Z)
and (g, 1) € Z?, a primitive vector, such that

a c| |1 o
A[b d}—{o al]'
If we set oy = |det [uv] [, the claim is equivalent to being able to solve the following for ay:

acyg=c mod oy
bag=d mod oy

Note also that oy Z 0 mod «q, for otherwise it would contradict that (ag, aq) is primitive.
The primitive vectors directing the edges of the polygon A(A) at the non-smooth vertex
A(p) are (1,0) and (ap, 1). We can additionally do a shear transformation via a matrix of

the form
1 k
si=[5 1]

and obtain a GL(2,Z)-equivalent polygon Sy A(A) for which the non-smooth vertex S; A(p)
has edge directing vectors (1,0) and (aq, o) where 0 < as < ay.

We now create a new vertical edge on the polygon S A(A) as close to the vertex S; A(p)
as desired, thereby eliminating that vertex. Call this new polygon A;. Of the two vertices
at the endpoints of this new edge, one is clearly smooth: the one with edge directing vectors
(1,0) and (0,1). The other vertex has edge directing vectors (0,—1) and (a9, ;) and is
smooth if and only if

0 Qg | .
det |i_1 a1:| = Qg = 1.

If this second vertex is smooth, the desired polygon A is
ATLSTHAY).
Otherwise, the process continues: let B be the matrix
0 -1
B { I } |

13



Then the polygon B(A;) is smooth except at one vertex p;, which has edge directing vectors
B((0,—1)) = (1,0) and B((a2, 1)) = (—aq,az). As before, we can apply a shear transfor-
mation to obtain Sy B(A;) such that the edge directing vectors at the non-smooth vertex
SoB(p1) are of the form (1,0) and (ag, ag) with 0 < a3 < as. Proceeding exactly as before,
we create a new vertical edge on the polygon Sy B(A;) as close to the vertex Sy B(p;) as de-
sired, thereby eliminating it. Call this new polygon A,. Of the two vertices at the endpoints
of the new edge, the one with edge directing vectors (0, 1) and (1,0) is clearly smooth, the
other one has edge directing vectors (0, —1) and (a3, ) and is smooth if and only if a3 = 1.

If that is so, the desired polygon A is
ATISTIBTIS N (Ay),

otherwise we repeat the process.

Because ai,az,as3,... is a strictly decreasing sequence of non-negative integers, it will
reach 1 in at most a; — 1 steps, thus terminating the process and producing A with at most
a1 — 1 more edges than A. This proves the statement in the lemma. [ O

Remark 4.6. Note that the process described in the proof of Lemma does not rely on A
being smooth at all vertices other than p. In fact, the result holds for any simple rational
non-smooth polytope A, with any number of non-smooth vertices, except that the number

of extra edges will be
> (Idet [u;vi] | — 1),

Pi

where the p;s are the non-smooth vertices of A. The new polytope A is equal to A except
in neighborhoods of the vertices p; that can be made as small as desired.

Now we are ready to prove the main theorem of this section.
Theorem 4.7. The completion of (D, d) is (€, d).

Proof. Recall the metric space inclusions
(®Tad) - (?Qad) C (?2>d) - (ead)

We shall prove that the completion of (D, d) contains (Pg, d), that the completion of (Pg, d)
contains (Pq, d), and that the completion of (Py,d) contains (€, d). Then by Theorem 4]
the conclusion follows.

A.) The completion of (Dr,d) contains (Pg,d). Because d is a metric on Py that coincides
with the given metric on Dy, in order to prove that the completion of Dy contains Pg it
suffices to show that for each A € Pg there exists a polygon in Dy as close to A as desired,
relative to the metric d. Lemma and, in particular Remark [£.6] guarantee that this is
SO.

B.) The completion of (Pg,d) contains (P2, d). Because d is a metric on Py that coincides
with the given metric on Pg, in order to prove that the completion of (Pg,d) contains
(P2, d) it suffices to show that for each A € P, there exists a polygon Ag € Pg as close
to A as desired, relative to the metric d. This rational polygon Ag can be obtained by
approximating the irrational slopes of the edges of A by rational numbers and choosing for
directing vectors of the edges the corresponding lattice vectors, and also by changing the

vertex points accordingly. This way, we can make the symmetric difference between the
14



original polygon A and the rational polygon Ag be contained in a e-ball of the edges of A,
the area of which can be made as small as needed by making ¢ small enough.

C.) The completion of (Pa,d) contains (C,d). Because d is a metric on € that coincides with
the given metric on Ps, in order to prove that the completion of (Py,d) contains (C,d) it
suffices to show that for each C' € € there exists a polygon A, € Py as close to C' as desired,
relative to the metric d. In order to do this, observe that given a compact convex set C' € C
and e > 0, there exists a collection of disjoint rectangles {[a;, b;) X [¢;, d;)}Y., contained in C

such that

< €.
Ll
Let Ay be the convex hull of UiNzl[ai, b;] x [ci,d;]. Since C'is convex, we have

N
Xc — Z Xlai,bs) % [ci,ds)
i=1

U[&i,bi) X [Ci,di) C Ag C C,
i=1
and hence
Ixe — xaqlli <,
which proves the claim. [ O

Proposition 4.8. The space (Dr,d) is not locally compact.

Proof. To prove that (Dr,d) is not locally compact, we show that the closure of any open
ball B.(Hy10) C Dr is not compact in (Dr,d). For each fixed ¢, let § < § < € be an
irrational number, and let Qs be the polygon in Figure [6l Note that Qs € Py \ Dr. By a
triangle inequality argument it is easy to see that

B: (Qs) C B-(Hi10)

Because (Dr,d) is dense in (Pq, d) (see the proof of Theorem [L7]), there exists a sequence of
Delzant polygons

{An}nen C Bz(Qs)
that converges to Qs in (Py,d). Thus any subsequence of {A,} also converges to Qs in
(Pq, d), and hence does not converge in (Dr, d). This proves that the closure of B.(Hj 1) in
Dr is not compact. [ U

1

F1GURE 6. The polygon Q5.
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Remark 4.9. There is another metric commonly used on €, namely the Hausdorff metric dyg
(see [3]). Given two elements A, B € €, we define

du(A, B) := max{sup inf ||z — y||, sup inf ||y — z||}.
(4, B) = max{sup nf |~y sup inf 1y ]

As proved in [28], the metrics d and dy are equivalent on €, and consequently all the
topological properties proved for (€, d) and (Dr,d) also hold for (C,dy) and (Dr,dy). We
chose to work with d because on Dt this is related to the Duistermaat-Heckman measure

(see Remark 2.0)).

Remark 4.10. Other moduli spaces of polygons have been studied, for example, in [15] [16]
by Hausmann and Knutson and in [I7] by Kapovich and Millson. The former focuses on
the space of polygons in R* with a fixed number of edges up to translations and positive
homotheties, whereas the latter studies the space of polygons in R? with fixed side lengths
up to orientation preserving isometries. However these different contexts completely change
the flavor of the topological problem.

5. FURTHER PROBLEMS
Theorem [[.4] leads to further questions (not directly related among themselves).

Problem 5.1 (Other moduli spaces). First of all, we recall that symplectic toric manifolds
are always Kahler (see [8,[12]). Besides the spaces we introduced, it would be interesting to
study the topological properties of the following:

(a) Mrp/ ~, where ~ corresponds to rescaling the symplectic form, with the quotient
topology. This corresponds to considering the space Dr/PSL(n;Z).

(b) My/ ~, where we also identify the Ké&hler manifolds (M,w) and (M,w’) if the co-
homology classes of their Kahler forms live in the same connected component of the

Kahler cone.

Problem 5.2 (Completeness at manifold level). This question attempts to make more ex-
plicit the relation between the completion at the level of polytopes with the completion at
the level of manifolds given in Theorem [[.4l View Mr as a subset of the set of (all) integrable
systems on symplectic 4-manifolds

F={(M,w,F)| F:=(f1,f): M - R*}.
The map v: F — B'(R?) given by
v(M,w, F) := F(M)
extends (). What can one say about the intersection
Vi=Cnu(F)?

Even though in this question F is assumed smooth (because integrable systems F': M — R?
are usually required to be everywhere smooth), the case when F' is just continuous on M
and smooth on an open dense subset of M is also interesting. Also, it would be interesting
to investigate under which conditions F integrates to a T?-action on (an open dense subset
of) M. (See, for example, [30, Proposition 2.12].)

A different but related approach to the same problem is to enlarge the category of objects

by relaxing the smoothness condition on the polytope. For example, from the work of Lerman
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and Tolman in [21], we know that any rational convex polytope is the momentum map image
of a symplectic toric orbifold. However we do not know of a similar identification for generic
convex compact subsets of R2.

Problem 5.3 (Higher dimensional moduli spaces). This paper addresses the case 2n = 4 of
Problem 2.42 in [26]. We do not have results on the higher dimensional case 2n > 6.

Problem 5.4 (Continuity of packing density function). Consider the maximal density func-
tion

Q: MT/ ~ — (O, 1]
which assigns to a symplectic toric manifold its maximal density by equivariantly embedded
symplectic balls of varying radii (see [23, Definition 2.4]). The function is most interesting
when considered on Mt/ ~, where ~ corresponds to rescaling the symplectic form (since
rescaling the symplectic form rescales the polytope and does not change the density).

This paper gives a quotient topology on Mr/ ~. With respect to this topology, where is
Q) continuous? 2 is an interesting map even if one disregards topology, for instance the fiber
over 1 consists of 2 points, CP?, and CP' x CP' (proven in [22, Theorem 1.7]) with scaled
symplectic forms, but for any other z € (0,1) the fiber is uncountable [23] Theorems 1.2,
1.3].

Problem 5.5 (Toric actions and symplectic forms). It would be interesting to define a torus

action on the moduli spaces My or M. Similarly for a symplectic form (e.g., [6]).

If one has both a torus action and a symplectic form, then one can formulate a notion of
Hamiltonian action and momentum map, and study connectivity and convexity properties
of the image (see for instance [14]).

Problem 5.6 (Topological invariants). Compute the topological invariants (fundamental
group, higher homotopy groups, cohomology groups, etc.) of the path-connected space m.
Some preliminary questions in this direction are:
(a) find non-trivial loop classes in m; (m);
(b) find non-trivial cohomology classes in Hl(m, 7).

In view of the constructions of this paper, one should be able to compute these classes with
the aid of the concrete description of the polytope space.
This problem is a particular case of [26, Problem 2.46].

6. APPENDIX: POLYTOPES

Let V be a finite dimensional real vector space. A convex polytope S in V is the closed

convex hull of a finite set {vy,...,v,}, i.e., the smallest convex set containing S or, equiva-
lently,
n n
COI’IV{’Ul,...,Un} = {Zaﬂ)i a; € [0,1], Zalzl} X
i=1 i=1

The dimension of Conv{vy,...,v,} is the dimension of the vector space spang{vi,...,v,}.
A polytope is full dimensional if its dimension equals the dimension of V.

Note that the definition implies that a convex polytope is a compact subset of V. An
extreme point of a convex subset C' C V is a point of C' which does not lie in any open line

segment joining two points of C'. Thus, a convex polytope is the closed convex hull of its
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extreme points (by the Krein-Milman Theorem [19]) called wvertices. In particular, the set
of vertices is contained in {vy,...,v,}. Clearly, there are infinitely many descriptions of the
same polytope as a closed convex hull of a finite set of points. However, the description of
a polytope as the convex hull of its vertices is minimal and unique.

There is another description of convex polytopes in terms of intersections of half-spaces.
Let V* be the dual of V' and denote by (,) : V* x V — R the natural non-degenerate duality
pairing. The positive (negative) half-space defined by a € V* and a € R is defined by

V(jfa = {’UEV }(a,v>§a}.

Traditionally, in the theory of convex polytopes, the half spaces are chosen to be of the form
V.- With these definitions, a convex polytope is given as a finite intersection of half-spaces.
As for the convex hull representation, there are infinitely many representations of the same
convex polytope as a finite intersection of half-spaces, but unlike it, a distinguished one
that is minimal exists only for full dimensional polytopes, we will describe it in the next
paragraph.

A face of a convex polytope is an intersection with a half-space satisfying the following
condition: the boundary of the half-space does not contain any interior point of the polytope.
Thus the faces of a convex polytope are themselves polytopes (and hence compact sets). Let
m be the dimension of a convex polytope. Then the whole polytope is the unique m-
dimensional face, or body, the (m — 1)-dimensional faces are called facets, the 1-dimensional
faces are the edges, and the 0-dimensional faces are the vertices of the polytope. If the
convex polytope is full-dimensional, its minimal and unique description as an intersection of
half-spaces is given when the boundary of those half-spaces contain the facets.
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