We construct a distance on the moduli space of symplectic toric manifolds of
dimension four. Then we study some basic topological properties of this space,
in particular, path-connectedness, compactness, and completeness. The
construction of the distance is related to the Duistermaat-Heckman measure and
the Hausdorff metric. While the moduli space, its topology and metric, may be
constructed in any dimension, the tools we use in the proofs are
four-dimensional, and hence so is our main result.Comment: To appear in Geometriae Dedicata, minor changes to previous version,
19 pages, 6 figure