87 research outputs found

    Studium úlohy Antibakterií a hub účastnícch se degradace rostlinné biomasy kombinací biochemických a moderních sekvenčních metod

    Get PDF
    Dead plant biomass is a key pool of carbon in terrestrial ecosystems. Its decomposition in soil environments is thus an essential process of the carbon cycle. Fungi are considered to be the primary decomposers in soil ecosystems because of their physiological adaptations and enzymatic apparatus composed from highly effective oxidative and hydrolytic enzymes. Many recent works show that in addition to fungi, bacteria may also play a significant role in lignocellulose decomposition and among bacteria, the members of the phylum Actinobacteria are often regarded to significantly contribute to cellulose and lignocellulose decomposition. This thesis is focused on the evaluation of the role that fungi and Actinobacteria play in dead plant biomass degradation. First, it explored mechanisms involved in degradation, in particular the enzymatic breakdown of major lignocellulose components as cellulose, hemicelluloses and lignin. Enzymatic apparatus of the saprotrophic fungus Fomes fomentarius was explored both in vitro as well as in vivo. Several Actinobacteria were isolated from soil and comparative experiments, investigating production of hydrolytic enzymes, were carried out to track the transformation of polysaccharides and lignin by these strains. To explain the roles of lignocellulose decomposers in...Odumřelá rostlinná biomasa je klíčovým zdrojem uhlíku v pevninských ekosystémech, a proto je její rozklad významný pro koloběh tohoto prvku na zemi. Mezi nejvýznamnější rozkladače jsou řazeny především houby, a to zejména díky schopnosti produkovat vysoce účinné oxidativní a hydrolytické enzymy. Mnoho současných prací dále ukazuje, že kromě hub mohou být dalšími důležitými rozkladači celulózy a lignocelulózy také bakterie, zejména zástupci kmene Actinobacteria. Tato disertační práce je zaměřena na zhodnocení role hub a aktinobakterií při rozkladu odumřelé rostlinné biomasy. V rámci jejího řešení byly nejdříve zkoumány mechanismy tohoto rozkladu, týkající se především rozkladu hlavních komponent lignocelulózy: celulózy, hemicelulóz a ligninu, pomocí extracelulárních enzymů. U saprotrofní houby Fomes fomentarius byl důkladně popsán enzymový aparát a to jak in vitro, tak in vivo. Schopnost produkce hydrolytických enzymů byla dále testována u aktinobakterií izolovaných z půdy a u vybraných kmenů byly provedeny experimenty sledující osud polysacharidů a ligninu v průběhu jejich dekompozice. Aby bylo možno objasnit úlohu rozkladačů lignocelulózy v komplexních prostředích, jako je půda, bylo zkoumáno jejich zastoupení ve společenstvech hub a bakterií se speciálním zaměřením na aktinobakterie. K dosažení...Department of Genetics and MicrobiologyKatedra genetiky a mikrobiologieFaculty of SciencePřírodovědecká fakult

    Potential of cometabolic transformation of polysaccharides and lignin in lignocellulose by soil Actinobacteria

    Get PDF
    While it is known that several Actinobacteria produce enzymes that decompose polysaccharides or phenolic compounds in dead plant biomass, the occurrence of these traits in the environment remains largely unclear. The aim of this work was to screen isolated actinobacterial strains to explore their ability to produce extracellular enzymes that participate in the degradation of polysaccharides and their ability to cometabolically transform phenolic compounds of various complexities. Actinobacterial strains were isolated from meadow and forest soils and screened for their ability to grow on lignocellulose. The potential to transform 14C-labelled phenolic substrates (dehydrogenation polymer (DHP), lignin and catechol) and to produce a range of extracellular, hydrolytic enzymes was investigated in three strains of Streptomyces spp. that possessed high lignocellulose degrading activity. Isolated strains showed high variation in their ability to produce cellulose- and hemicellulose-degrading enzymes and were able to mineralise up to 1.1% and to solubilise up to 4% of poplar lignin and to mineralise up to 11.4% and to solubilise up to 64% of catechol, while only minimal mineralisation of DHP was observed. The results confirm the potential importance of Actinobacteria in lignocellulose degradation, although it is likely that the decomposition of biopolymers is limited to strains that represent only a minor portion of the entire community, while the range of simple, carbon-containing compounds that serve as sources for actinobacterial growth is relatively wide.Peer reviewe

    GlobalFungi, a global database of fungal occurrences from high-throughput-sequencing metabarcoding studies

    Get PDF
    Fungi are key players in vital ecosystem services, spanning carbon cycling, decomposition, symbiotic associations with cultivated and wild plants and pathogenicity. The high importance of fungi in ecosystem processes contrasts with the incompleteness of our understanding of the patterns of fungal biogeography and the environmental factors that drive those patterns. To reduce this gap of knowledge, we collected and validated data published on the composition of soil fungal communities in terrestrial environments including soil and plant-associated habitats and made them publicly accessible through a user interface at https://globalfungi.com. The GlobalFungi database contains over 600 million observations of fungal sequences across >17 000 samples with geographical locations and additional metadata contained in 178 original studies with millions of unique nucleotide sequences (sequence variants) of the fungal internal transcribed spacers (ITS) 1 and 2 representing fungal species and genera. The study represents the most comprehensive atlas of global fungal distribution, and it is framed in such a way that third-party data addition is possible

    A meta-analysis of global fungal distribution reveals climate-driven patterns

    Get PDF
    The evolutionary and environmental factors that shape fungal biogeography are incompletely understood. Here, we assemble a large dataset consisting of previously generated mycobiome data linked to specific geographical locations across the world. We use this dataset to describe the distribution of fungal taxa and to look for correlations with different environmental factors such as climate, soil and vegetation variables. Our meta-study identifies climate as an important driver of different aspects of fungal biogeography, including the global distribution of common fungi as well as the composition and diversity of fungal communities. In our analysis, fungal diversity is concentrated at high latitudes, in contrast with the opposite pattern previously shown for plants and other organisms. Mycorrhizal fungi appear to have narrower climatic tolerances than pathogenic fungi. We speculate that climate change could affect ecosystem functioning because of the narrow climatic tolerances of key fungal taxa

    Termites Are Associated with External Species-Specific Bacterial Communities

    Get PDF
    All termites have established a wide range of associations with symbiotic microbes in their guts. Some termite species are also associated with microbes that grow in their nests, but the prevalence of these associations remains largely unknown. Here, we studied the bacterial communities associated with the termites and galleries of three wood-feeding termite species by using 16S rRNA gene amplicon sequencing. We found that the compositions of bacterial communities among termite bodies, termite galleries, and control wood fragments devoid of termite activities differ in a species-specific manner. Termite galleries were enriched in bacterial operational taxonomic units (OTUs) belonging to Rhizobiales and Actinobacteria, which were often shared by several termite species. The abundance of several bacterial OTUs, such as Bacillus, Clostridium, Corynebacterium, and Staphylococcus, was reduced in termite galleries. Our results demonstrate that both termite guts and termite galleries harbor unique bacterial communities.IMPORTANCE As is the case for all ecosystem engineers, termites impact their habitat by their activities, potentially affecting bacterial communities. Here, we studied three wood-feeding termite species and found that they influence the composition of the bacterial communities in their surrounding environment. Termite activities have positive effects on Rhizobiales and Actinobacteria abundance and negative effects on the abundance of several ubiquitous genera, such as Bacillus, Clostridium, Corynebacterium, and Staphylococcus. Our results demonstrate that termite galleries harbor unique bacterial communities

    Termites host specific fungal communities that differ from those in their ambient environments

    Get PDF
    Termites are important plant biomass decomposers. Their digestive activity typically relies on prokaryotes and protozoa present in their guts. In some cases, such as in fungus-growing termites, digestion also relies on ectosymbiosis with specific fungal taxa. To date, the mycobiome of termites has yet to be investigated in detail. We evaluated the specificity of whole-termite associated fungal communities in three wood-feeding termite species. We showed that the whole-termite fungal community spectra are stable over diverse environments, regardless of the host species, and differ markedly from the wood in which they nest. The core mycobiome is similar to that found in other ecologically related insects and consists of a narrow spectrum of common filamentous fungi and yeasts, known for their stress tolerance and their ability to decompose plant biomass. The observed patterns suggest that a number of fungal strains may have a symbiotic relationship with termites, and our results set the stage for future investigations into the interactions between fungi, termites, and their other gut microbiota

    Niche differentiation of bacteria and fungi in carbon and nitrogen cycling of different habitats in a temperate coniferous forest: A metaproteomic approach

    Get PDF
    Temperate coniferous forests sustain the highest levels of biomass of all terrestrial ecosystems and belong to the major carbon sinks on Earth. However, the community composition and its functional diversity depending on the habitat have yet to be unveiled. Here, we analyzed the proteomes from litter, plant roots, rhizosphere, and bulk soil in a temperate coniferous forest at two time points to improve the understanding of the interplay between bacterial and eukaryotic communities in different habitats. Our metaproteomic approach yielded a total of 139,127 proteins that allowed to differentiate the contribution of microbial taxa to protein expression as well as the general functionality based on KEGG Orthology in each habitat. The pool of expressed carbohydrate-active enzymes (CAZymes) was dominated by fungal proteins. While CAZymes in roots and litter targeted mostly the structural biopolymers of plant origin such as lignin and cellulose, the majority of CAZymes in bulk and rhizosphere soil targeted oligosaccharides, starch, and glycogen. Proteins involved in nitrogen cycling were mainly of bacterial origin. Most nitrogen cycling proteins in litter and roots participated in ammonium assimilation while those performing nitrification were the most abundant in bulk and rhizosphere soil. Together, our results indicated niche differentiation of the microbial involvement in carbon and nitrogen cycling in a temperate coniferous forest topsoil

    Large subglacial source of mercury from the southwestern margin of the Greenland Ice Sheet

    Get PDF
    The Greenland Ice Sheet is currently not accounted for in Arctic mercury budgets, despite large and increasing annual runoff to the ocean and the socio-economic concerns of high mercury levels in Arctic organisms. Here we present concentrations of mercury in meltwaters from three glacial catchments on the southwestern margin of the Greenland Ice Sheet and evaluate the export of mercury to downstream fjords based on samples collected during summer ablation seasons. We show that concentrations of dissolved mercury are among the highest recorded in natural waters and mercury yields from these glacial catchments (521–3,300 mmol km−2 year−1) are two orders of magnitude higher than from Arctic rivers (4–20 mmol km−2 year−1). Fluxes of dissolved mercury from the southwestern region of Greenland are estimated to be globally significant (15.4–212 kmol year−1), accounting for about 10% of the estimated global riverine flux, and include export of bioaccumulating methylmercury (0.31–1.97 kmol year−1). High dissolved mercury concentrations (~20 pM inorganic mercury and ~2 pM methylmercury) were found to persist across salinity gradients of fjords. Mean particulate mercury concentrations were among the highest recorded in the literature (~51,000 pM), and dissolved mercury concentrations in runoff exceed reported surface snow and ice values. These results suggest a geological source of mercury at the ice sheet bed. The high concentrations of mercury and its large export to the downstream fjords have important implications for Arctic ecosystems, highlighting an urgent need to better understand mercury dynamics in ice sheet runoff under global warming
    corecore