162 research outputs found

    From the warm magnetized atomic medium to molecular clouds

    Full text link
    {It has recently been proposed that giant molecular complexes form at the sites where streams of diffuse warm atomic gas collide at transonic velocities.} {We study the global statistics of molecular clouds formed by large scale colliding flows of warm neutral atomic interstellar gas under ideal MHD conditions. The flows deliver material as well as kinetic energy and trigger thermal instability leading eventually to gravitational collapse.} {We perform adaptive mesh refinement MHD simulations which, for the first time in this context, treat self-consistently cooling and self-gravity.} {The clouds formed in the simulations develop a highly inhomogeneous density and temperature structure, with cold dense filaments and clumps condensing from converging flows of warm atomic gas. In the clouds, the column density probability density distribution (PDF) peaks at \sim 2 \times 10^{21} \psc and decays rapidly at higher values; the magnetic intensity correlates weakly with density from n0.1n \sim 0.1 to 10^4 \pcc, and then varies roughly as n1/2n^{1/2} for higher densities.} {The global statistical properties of such molecular clouds are reasonably consistent with observational determinations. Our numerical simulations suggest that molecular clouds formed by the moderately supersonic collision of warm atomic gas streams.}Comment: submitted to A&

    Clump morphology and evolution in MHD simulations of molecular cloud formation

    Full text link
    Abridged: We study the properties of clumps formed in three-dimensional weakly magnetized magneto-hydrodynamic simulations of converging flows in the thermally bistable, warm neutral medium (WNM). We find that: (1) Similarly to the situation in the classical two-phase medium, cold, dense clumps form through dynamically-triggered thermal instability in the compressed layer between the convergent flows, and are often characterised by a sharp density jump at their boundaries though not always. (2) However, the clumps are bounded by phase-transition fronts rather than by contact discontinuities, and thus they grow in size and mass mainly by accretion of WNM material through their boundaries. (3) The clump boundaries generally consist of thin layers of thermally unstable gas, but these layers are often widened by the turbulence, and penetrate deep into the clumps. (4) The clumps are approximately in both ram and thermal pressure balance with their surroundings, a condition which causes their internal Mach numbers to be comparable to the bulk Mach number of the colliding WNM flows. (5) The clumps typically have mean temperatures 20 < T < 50 K, corresponding to the wide range of densities they contain (20 < n < 5000 pcc) under a nearly-isothermal equation of state. (6) The turbulent ram pressure fluctuations of the WNM induce density fluctuations that then serve as seeds for local gravitational collapse within the clumps. (7) The velocity and magnetic fields tend to be aligned with each other within the clumps, although both are significantly fluctuating, suggesting that the velocity tends to stretch and align the magnetic field with it. (8) The typical mean field strength in the clumps is a few times larger than that in the WNM. (9) The magnetic field strength has a mean value of B ~ 6 mu G ...Comment: substantially revised version, accepted by MNRAS, 13 pages, 14 figures, high resolution version: http://www.ita.uni-heidelberg.de/~banerjee/publications/MC_Formation_Paper2.pd

    Density probability distribution in one-dimensional polytropic gas dynamics

    Full text link
    We discuss the generation and statistics of the density fluctuations in highly compressible polytropic turbulence, based on a simple model and one-dimensional numerical simulations. Observing that density structures tend to form in a hierarchical manner, we assume that density fluctuations follow a random multiplicative process. When the polytropic exponent γ\gamma is equal to unity, the local Mach number is independent of the density, and our assumption leads us to expect that the probability density function (PDF) of the density field is a lognormal. This isothermal case is found to be singular, with a dispersion σs2\sigma_s^2 which scales like the square turbulent Mach number M~2\tilde M^2, where slnρs\equiv \ln \rho and ρ\rho is the fluid density. This leads to much higher fluctuations than those due to shock jump relations. Extrapolating the model to the case γ1\gamma \not =1, we find that, as the Mach number becomes large, the density PDF is expected to asymptotically approach a power-law regime, at high densities when γ<1\gamma<1, and at low densities when γ>1\gamma>1. This effect can be traced back to the fact that the pressure term in the momentum equation varies exponentially with ss, thus opposing the growth of fluctuations on one side of the PDF, while being negligible on the other side. This also causes the dispersion σs2\sigma_s^2 to grow more slowly than M~2\tilde M^2 when γ1\gamma\not=1. In view of these results, we suggest that Burgers flow is a singular case not approached by the high-M~\tilde M limit, with a PDF that develops power laws on both sides.Comment: 9 pages + 12 postscript figures. Submitted to Phys. Rev.
    corecore