2 research outputs found

    On the interaction of a thin, supersonic shell with a molecular cloud

    Full text link
    Molecular clouds (MCs) are stellar nurseries, however, formation of stars within MCs depends on the ambient physical conditions. MCs, over a free-fall time are exposed to numerous dynamical phenomena, of which, the interaction with a thin, dense shell of gas is but one. Below we present results from self-gravitating, 3-D smoothed particle hydrodynamics ({\small SPH}) simulations of the problem; seven realisations of the problem have been performed by varying the precollision density within the cloud, the nature of the post-collision shock, and the spatial resolution in the computational domain. Irrespective of the type of shock, a complex network of dense filaments, seeded by numerical noise, readily appears in the shocked cloud. Segregation of the dense and rarefied gas phases also manifests itself in a bimodal distribution of gas density. We demonstrate that the power-spectrum for rarefied gas is Kolomogorov like, while that for the denser gas is considerably steeper. As a corollary to the main problem, we also look into the possibly degenerative effect of the {\small SPH} artificial viscosity on the impact of the incident shell. It is observed that stronger viscosity leads to greater post-shock dissipation, that strongly decelerates the incident shock-front and promotes formation of contiguous structure, albeit on a much longer timescale. We conclude that too much viscosity is likely to enhance the proclivity towards gravitational boundedness of structure, leading to unphysical fragmentation.On the other hand, insufficient resolution appears to suppress fragmentation. Convergence of results is tested at both extremes, first by repeating the test case with more than a million particles and then with only half the number of particles in the original test case.Comment: 15 pages, 15 figures, and 1 Table; To appear in Monthly Notices to the RA

    On turbulent fragmentation and the origin of the stellar IMF

    Full text link
    Two varieties of the universal stellar initial mass function (IMF) viz., the Kroupa and the Chabrier IMF, have emerged over the last decade to explain the observed distribution of stellar masses. The possibility of the universal nature of the stellar IMF leads us to the interesting prospect of a universal mode of star-formation. It is well-known that turbulent fragmentation of gas in the interstellar medium produces a lognormal distribution of density which is further reflected by the mass-function for clumps at low and intermediate masses. Stars condense out of unstable clumps through a complex interplay between a number of dynamic processes which must be accounted for when tracing the origin of the stellar IMF. In the present work, applying the theory of gravitational fragmentation we first derive the mass function (MF) for clumps. Then a core mass function (CMF) is derived by allowing the clumps to fragment, having subjected each one to a random choice of gas temperature. Finally, the stellar IMF is derived by applying a random core-to-star conversion efficiency, ϵ\epsilon, in the range of 5%-15% to each CMF. We obtain a power-law IMF that has exponents within the error-bars on the Kropua IMF. This derived IMF is preceded by a similar core mass function which suggests, gravoturbulent fragmentation plays a key role in assembling necessary conditions that relate the two mass-functions. In this sense the star-formation process, at least at low redshifts where gas cooling is efficient, is likely to be universal. We argue that the observed knee in the CMF and the stellar IMF may alternatively be interpreted in terms of the characteristic temperature at which gas in potential star-forming clouds is likely to be found. Our results also show that turbulence in star-forming clouds is probably driven on large spatial scales with a power-spectrum steeper than Kolmogorov-type.Comment: 10 pages, 5 figures; To appear in New Astronomy; Figure numbers corrected in this versio
    corecore