68 research outputs found
Breeding Vegetables for Nutritional Security
The most dominant vegetables in the global food economy are tomato, cucurbits, (pumpkin, squash, cucumber and gherkin), allium (onion, shallot, garlic) and chili. These vegetables are consumed in nearly all countries although with much variation in shape, size, color and taste, while the marketing of global vegetables accounts for significant revenue streams, traditional vegetables often have superior nutritional properties. Biodiversity is considered essential for food security and nutrition and can contribute to the achievement through improved dietary choices and positive health impacts Through conventional breeding approach, it is possible to develop new vegetable varieties or integrate the favorable genes for neutraceuticals, bioactive compounds and edible color into cultivated varieties. Advances in molecular biology and recombinant technology have paved the way for enhancing the pace of special trait variety development using marker assisted breeding and designing new vegetable crop plants following transgenic approach
Exploring the genetic variability, heritability, gene action for yield related traits and ToLCNDV resistance on F3 and F4 generations in cucumber [Cucumis sativus L.]
Cucumber is traditionally cultivated in India and is recognized as a primary centre of origin, belonging to the gourd family, Cucurbitaceae. The study focused on assessing genetic variability in F3 and F4 cucumber populations and examining correlations among various characters including ToLCNDV resistance. In both F3 and F4 generations, per cent disease index, fruit weight and vine length exhibited high heritability and genetic advance as per cent of mean. In F4 generation, yield per plant, fruit girth, fruit length, number of branches and number of fruits per plant also showed high heritability and genetic advance as per cent of mean. Yield related traits viz., sex ratio, number of fruits per vine, yield per plant and vine length exhibited complementary gene action. Days to first harvest and crop duration demonstrated negatively skewed distribution suggesting duplicate gene action and rapid genetic gain under selection. Leptokurtic distribution in yield per plant and associated traits implied the involvement of few genes for genetic inheritance of the above traits. Significant positive associations were found between yield per plant and number of fruits per plant, fruit weight and number of branches per plant suggesting potential early selection for these characters to enhance overall yield
Elevated serum levels of 25-hydroxyvitamin D3 in outdoor workers in South India
This article does not have an abstract
IN SILICO DESIGN, SYNTHESIS, CHARACTERIZATION, IN VITRO ANTI-INFLAMMATORY, AND ANTIOXIDANT STUDIES OF 4-ARYL-4H-CHROMENE DERIVATIVES
Objective: The objective of the study was to explore in silico design, preparation, characterization, and evaluation in vitro of some novel 4H-chromene derivatives as anti-inflammatory and antioxidant agents.Methods: 4-phenyl-4H chromene derivatives were imperiled to in silico modeling studies at the molecular level. The ligands were docked against cyclooxygenase-2 (COX-2) receptor targets using Argus Lab. Based on the result, the derivatives were selected for wet lab synthesis. A highly efficient multicomponent reaction of 4H chromene was carried out by one-step condensation of aldehyde with malononitrile and resorcinol without catalyst in water under ultrasound irradiation. The prepared compounds were characterized by noting their melting point, ultraviolet (UV) spectroscopy, infrared (IR) spectroscopy, and thin layer chromatography (TLC) and were scrutinized for its in vitro anti-inflammatory and antioxidant activitives by in vitro cell culture studies. IR spectra of the two compounds were analyzed and studied. Thus, using melting point, TLC and UV spectroscopy the synthesized compounds were found to be pure and identified chemically. The synthesized compounds were then screened for in vitro antioxidant (by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and hydrogen peroxide free radical scavenging) activity and anti-inflammatory activity by Raw 264.7 cell lines.Result: From the study, it was noticed that chemical structure-2 showed better antioxidant and anti-inflammatory activitives than chemical structure. In the 4-phenyl-4H chromene derivatives, hydroxyl substitution at 7th position and electronegative halogen at 4th position showed better antioxidant and anti-inflammatory activities.Conclusion: The results disclosed that these synthesized derivatives be likely to have moderate action against COX-2 mediated diseases, thereby it may lessen inflammation and agony because of its antioxidant and anti-inflammatory activitives
Clinical Characteristics and Treatment Patterns of Children and Adults With IgA Nephropathy or IgA Vasculitis: Findings From the CureGN Study
Introduction:
The Cure Glomerulonephropathy Network (CureGN) is a 66-center longitudinal observational study of patients with biopsy-confirmed minimal change disease, focal segmental glomerulosclerosis, membranous nephropathy, or IgA nephropathy (IgAN), including IgA vasculitis (IgAV). This study describes the clinical characteristics and treatment patterns in the IgA cohort, including comparisons between IgAN versus IgAV and adult versus pediatric patients.
Methods:
Patients with a diagnostic kidney biopsy within 5 years of screening were eligible to join CureGN. This is a descriptive analysis of clinical and treatment data collected at the time of enrollment.
Results:
A total of 667 patients (506 IgAN, 161 IgAV) constitute the IgAN/IgAV cohort (382 adults, 285 children). At biopsy, those with IgAV were younger (13.0 years vs. 29.6 years, P < 0.001), more frequently white (89.7% vs. 78.9%, P = 0.003), had a higher estimated glomerular filtration rate (103.5 vs. 70.6 ml/min per 1.73 m2, P < 0.001), and lower serum albumin (3.4 vs. 3.8 g/dl, P < 0.001) than those with IgAN. Adult and pediatric individuals with IgAV were more likely than those with IgAN to have been treated with immunosuppressive therapy at or prior to enrollment (79.5% vs. 54.0%, P < 0.001).
Conclusion:
This report highlights clinical differences between IgAV and IgAN and between children and adults with these diagnoses. We identified differences in treatment with immunosuppressive therapies by disease type. This description of baseline characteristics will serve as a foundation for future CureGN studies
A global observational analysis to understand changes in air quality during exceptionally low anthropogenic emission
This global study, which has been coordinated by the World Meteorological Organization Global Atmospheric Watch (WMO/GAW) programme, aims to understand the behaviour of key air pollutant species during the COVID-19 pandemic period of exceptionally low emissions across the globe. We investigated the effects of the differences in both emissions and regional and local meteorology in 2020 compared with the period 2015–2019. By adopting a globally consistent approach, this comprehensive observational analysis focuses on changes in air quality in and around cities across the globe for the following air pollutants PM2.5, PM10, PMC (coarse fraction of PM), NO2, SO2, NOx, CO, O3 and the total gaseous oxidant (OX = NO2 + O3) during the pre-lockdown, partial lockdown, full lockdown and two relaxation periods spanning from January to September 2020. The analysis is based on in situ ground-based air quality observations at over 540 traffic, background and rural stations, from 63 cities and covering 25 countries over seven geographical regions of the world. Anomalies in the air pollutant concentrations (increases or decreases during 2020 periods compared to equivalent 2015–2019 periods) were calculated and the possible effects of meteorological conditions were analysed by computing anomalies from ERA5 reanalyses and local observations for these periods. We observed a positive correlation between the reductions in NO2 and NOx concentrations and peoples’ mobility for most cities. A correlation between PMC and mobility changes was also seen for some Asian and South American cities. A clear signal was not observed for other pollutants, suggesting that sources besides vehicular emissions also substantially contributed to the change in air quality. As a global and regional overview of the changes in ambient concentrations of key air quality species, we observed decreases of up to about 70% in mean NO2 and between 30% and 40% in mean PM2.5 concentrations over 2020 full lockdown compared to the same period in 2015–2019. However, PM2.5 exhibited complex signals, even within the same region, with increases in some Spanish cities, attributed mainly to the long-range transport of African dust and/or biomass burning (corroborated with the analysis of NO2/CO ratio). Some Chinese cities showed similar increases in PM2.5 during the lockdown periods, but in this case, it was likely due to secondary PM formation. Changes in O3 concentrations were highly heterogeneous, with no overall change or small increases (as in the case of Europe), and positive anomalies of 25% and 30% in East Asia and South America, respectively, with Colombia showing the largest positive anomaly of ~70%. The SO2 anomalies were negative for 2020 compared to 2015–2019 (between ~25 to 60%) for all regions. For CO, negative anomalies were observed for all regions with the largest decrease for South America of up to ~40%. The NO2/CO ratio indicated that specific sites (such as those in Spanish cities) were affected by biomass burning plumes, which outweighed the NO2 decrease due to the general reduction in mobility (ratio of ~60%). Analysis of the total oxidant (OX = NO2 + O3) showed that primary NO2 emissions at urban locations were greater than the O3 production, whereas at background sites, OX was mostly driven by the regional contributions rather than local NO2 and O3 concentrations. The present study clearly highlights the importance of meteorology and episodic contributions (e.g., from dust, domestic, agricultural biomass burning and crop fertilizing) when analysing air quality in and around cities even during large emissions reductions. There is still the need to better understand how the chemical responses of secondary pollutants to emission change under complex meteorological conditions, along with climate change and socio-economic drivers may affect future air quality. The implications for regional and global policies are also significant, as our study clearly indicates that PM2.5 concentrations would not likely meet the World Health Organization guidelines in many parts of the world, despite the drastic reductions in mobility. Consequently, revisions of air quality regulation (e.g., the Gothenburg Protocol) with more ambitious targets that are specific to the different regions of the world may well be required.Peer reviewedFinal Published versio
Effect of garlic on cardiovascular disorders: a review
Garlic and its preparations have been widely recognized as agents for prevention and treatment of cardiovascular and other metabolic diseases, atherosclerosis, hyperlipidemia, thrombosis, hypertension and diabetes. Effectiveness of garlic in cardiovascular diseases was more encouraging in experimental studies, which prompted several clinical trials. Though many clinical trials showed a positive effect of garlic on almost all cardiovascular conditions mentioned above, however a number of negative studies have recently cast doubt on the efficary of garlic specially its cholesterol lowering effect of garlic. It is a great challenge for scientists all over the world to make a proper use of garlic and enjoy its maximum beneficial effect as it is the cheapest way to prevent cardiovascular disease. This review has attempted to make a bridge the gap between experimental and clinical study and to discuss the possible mechanisms of such therapeutic actions of garlic
A global observational analysis to understand changes in air quality during exceptionally low anthropogenic emission conditions
This global study, which has been coordinated by the World Meteorological Organization Global Atmospheric
Watch (WMO/GAW) programme, aims to understand the behaviour of key air pollutant species during the
COVID-19 pandemic period of exceptionally low emissions across the globe. We investigated the effects of the
differences in both emissions and regional and local meteorology in 2020 compared with the period 2015–2019.
By adopting a globally consistent approach, this comprehensive observational analysis focuses on changes in air
quality in and around cities across the globe for the following air pollutants PM2.5, PM10, PMC (coarse fraction of
PM), NO2, SO2, NOx, CO, O3 and the total gaseous oxidant (OX = NO2 + O3) during the pre-lockdown, partial
lockdown, full lockdown and two relaxation periods spanning from January to September 2020. The analysis is
based on in situ ground-based air quality observations at over 540 traffic, background and rural stations, from 63
cities and covering 25 countries over seven geographical regions of the world. Anomalies in the air pollutant
concentrations (increases or decreases during 2020 periods compared to equivalent 2015–2019 periods) were
calculated and the possible effects of meteorological conditions were analysed by computing anomalies from
ERA5 reanalyses and local observations for these periods. We observed a positive correlation between the reductions
in NO2 and NOx concentrations and peoples’ mobility for most cities. A correlation between PMC and
mobility changes was also seen for some Asian and South American cities. A clear signal was not observed for
other pollutants, suggesting that sources besides vehicular emissions also substantially contributed to the change
in air quality.
As a global and regional overview of the changes in ambient concentrations of key air quality species, we
observed decreases of up to about 70% in mean NO2 and between 30% and 40% in mean PM2.5 concentrations
over 2020 full lockdown compared to the same period in 2015–2019. However, PM2.5 exhibited complex signals,
even within the same region, with increases in some Spanish cities, attributed mainly to the long-range transport
of African dust and/or biomass burning (corroborated with the analysis of NO2/CO ratio). Some Chinese cities
showed similar increases in PM2.5 during the lockdown periods, but in this case, it was likely due to secondary
PM formation. Changes in O3 concentrations were highly heterogeneous, with no overall change or small increases
(as in the case of Europe), and positive anomalies of 25% and 30% in East Asia and South America,
respectively, with Colombia showing the largest positive anomaly of ~70%. The SO2 anomalies were negative for
2020 compared to 2015–2019 (between ~25 to 60%) for all regions. For CO, negative anomalies were observed for all regions with the largest decrease for South America of up to ~40%. The NO2/CO ratio indicated that
specific sites (such as those in Spanish cities) were affected by biomass burning plumes, which outweighed the
NO2 decrease due to the general reduction in mobility (ratio of ~60%). Analysis of the total oxidant (OX = NO2
+ O3) showed that primary NO2 emissions at urban locations were greater than the O3 production, whereas at
background sites, OX was mostly driven by the regional contributions rather than local NO2 and O3 concentrations.
The present study clearly highlights the importance of meteorology and episodic contributions (e.g.,
from dust, domestic, agricultural biomass burning and crop fertilizing) when analysing air quality in and around
cities even during large emissions reductions. There is still the need to better understand how the chemical
responses of secondary pollutants to emission change under complex meteorological conditions, along with
climate change and socio-economic drivers may affect future air quality. The implications for regional and global
policies are also significant, as our study clearly indicates that PM2.5 concentrations would not likely meet the
World Health Organization guidelines in many parts of the world, despite the drastic reductions in mobility.
Consequently, revisions of air quality regulation (e.g., the Gothenburg Protocol) with more ambitious targets that
are specific to the different regions of the world may well be required.World Meteorological Organization Global Atmospheric Watch
programme is gratefully acknowledged for initiating and coordinating
this study and for supporting this publication.
We acknowledge the following projects for supporting the analysis
contained in this article:
Air Pollution and Human Health for an Indian Megacity project
PROMOTE funded by UK NERC and the Indian MOES, Grant reference
number NE/P016391/1;
Regarding project funding from the European Commission, the sole
responsibility of this publication lies with the authors. The European
Commission is not responsible for any use that may be made of the information
contained therein.
This project has received funding from the European Commission’s
Horizon 2020 research and innovation program under grant agreement
No 874990 (EMERGE project).
European Regional Development Fund (project MOBTT42) under the
Mobilitas Pluss programme;
Estonian Research Council (project PRG714);
Estonian Research Infrastructures Roadmap project Estonian Environmental
Observatory (KKOBS, project 2014-2020.4.01.20-0281).
European network for observing our changing planet project (ERAPLANET,
grant agreement no. 689443) under the European Union’s
Horizon 2020 research and innovation program, Estonian Ministry of
Sciences projects (grant nos. P180021, P180274), and the Estonian
Research Infrastructures Roadmap project Estonian Environmental Observatory
(3.2.0304.11-0395).
Eastern Mediterranean and Middle East—Climate and Atmosphere Research (EMME-CARE) project, which has received funding from the
European Union’s Horizon 2020 Research and Innovation Programme
(grant agreement no. 856612) and the Government of Cyprus.
INAR acknowledges support by the Russian government (grant
number 14.W03.31.0002), the Ministry of Science and Higher Education
of the Russian Federation (agreement 14.W0331.0006), and the Russian
Ministry of Education and Science (14.W03.31.0008). We are grateful to to the following agencies for providing access to
data used in our analysis:
A.M. Obukhov Institute of Atmospheric Physics Russian Academy of
Sciences;
Agenzia Regionale per la Protezione dell’Ambiente della Campania
(ARPAC);
Air Quality and Climate Change, Parks and Environment (MetroVancouver,
Government of British Columbia);
Air Quality Monitoring & Reporting, Nova Scotia Environment
(Government of Nova Scotia);
Air Quality Monitoring Network (SIMAT) and Emission Inventory,
Mexico City Environment Secretariat (SEDEMA);
Airparif (owner & provider of the Paris air pollution data);
ARPA Lazio, Italy;
ARPA Lombardia, Italy;
Association Agr´e´ee de Surveillance de la Qualit´e de l’Air en ˆIle-de-
France AIRPARIF / Atmo-France;
Bavarian Environment Agency, Germany;
Berlin Senatsverwaltung für Umwelt, Verkehr und Klimaschutz,
Germany;
California Air Resources Board;
Central Pollution Control Board (CPCB), India;
CETESB: Companhia Ambiental do Estado de SËœao Paulo, Brazil.
China National Environmental Monitoring Centre;
Chandigarh Pollution Control Committee (CPCC), India.
DCMR Rijnmond Environmental Service, the Netherlands.
Department of Labour Inspection, Cyprus;
Department of Natural Resources Management and Environmental
Protection of Moscow.
Environment and Climate Change Canada;
Environmental Monitoring and Science Division Alberta Environment
and Parks (Government of Alberta);
Environmental Protection Authority Victoria (Melbourne, Victoria,
Australia);
Estonian Environmental Research Centre (EERC);
Estonian University of Life Sciences, SMEAR Estonia;
European Regional Development Fund (project MOBTT42) under
the Mobilitas Pluss programme;
Finnish Meteorological Institute;
Helsinki Region Environmental Services Authority;
Haryana Pollution Control Board (HSPCB), IndiaLondon Air Quality
Network (LAQN) and the Automatic Urban and Rural Network (AURN)
supported by the Department of Environment, Food and Rural Affairs,
UK Government;
Madrid Municipality;
Met Office Integrated Data Archive System (MIDAS);
Meteorological Service of Canada;
Minist`ere de l’Environnement et de la Lutte contre les changements
climatiques (Gouvernement du Qu´ebec);
Ministry of Environment and Energy, Greece;
Ministry of the Environment (Chile) and National Weather Service
(DMC);
Moscow State Budgetary Environmental Institution
MOSECOMONITORING.
Municipal Department of the Environment SMAC, Brazil;
Municipality of Madrid public open data service;
National institute of environmental research, Korea;
National Meteorology and Hydrology Service (SENAMHI), Peru;
New York State Department of Environmental Conservation;
NSW Department of Planning, Industry and Environment;
Ontario Ministry of the Environment, Conservation and Parks,
Canada;
Public Health Service of Amsterdam (GGD), the Netherlands.
Punjab Pollution Control Board (PPCB), India.
R´eseau de surveillance de la qualit´e de l’air (RSQA) (Montr´eal);
Rosgydromet. Mosecomonitoring, Institute of Atmospheric Physics,
Russia;
Russian Foundation for Basic Research (project 20–05–00254)
SAFAR-IITM-MoES, India;
SËœao Paulo State Environmental Protection Agency, CETESB;
Secretaria de Ambiente, DMQ, Ecuador;
SecretarÃa Distrital de Ambiente, Bogot´a, Colombia.
Secretaria Municipal de Meio Ambiente Rio de Janeiro;
Mexico City Atmospheric Monitoring System (SIMAT); Mexico City
Secretariat of Environment, SecretarÃa del Medio Ambiente (SEDEMA);
SLB-analys, Sweden;
SMEAR Estonia station and Estonian University of Life Sciences
(EULS);
SMEAR stations data and Finnish Center of Excellence;
South African Weather Service and Department of Environment,
Forestry and Fisheries through SAAQIS;
Spanish Ministry for the Ecological Transition and the Demographic
Challenge (MITECO);
University of Helsinki, Finland;
University of Tartu, Tahkuse air monitoring station;
Weather Station of the Institute of Astronomy, Geophysics and Atmospheric
Science of the University of SËœao Paulo;
West Bengal Pollution Control Board (WBPCB).http://www.elsevier.com/locate/envintam2023Geography, Geoinformatics and Meteorolog
Household, community, sub-national and country-level predictors of primary cooking fuel switching in nine countries from the PURE study
Introduction. Switchingfrom polluting (e.g. wood, crop waste, coal)to clean (e.g. gas, electricity) cooking
fuels can reduce household air pollution exposures and climate-forcing emissions.While studies have
evaluated specific interventions and assessed fuel-switching in repeated cross-sectional surveys, the role
of different multilevel factors in household fuel switching, outside of interventions and across diverse
community settings, is not well understood. Methods.We examined longitudinal survey data from
24 172 households in 177 rural communities across nine countries within the Prospective Urban and
Rural Epidemiology study.We assessed household-level primary cooking fuel switching during a
median of 10 years offollow up (∼2005–2015).We used hierarchical logistic regression models to
examine the relative importance of household, community, sub-national and national-level factors
contributing to primary fuel switching. Results. One-half of study households(12 369)reported
changing their primary cookingfuels between baseline andfollow up surveys. Of these, 61% (7582)
switchedfrom polluting (wood, dung, agricultural waste, charcoal, coal, kerosene)to clean (gas,
electricity)fuels, 26% (3109)switched between different polluting fuels, 10% (1164)switched from clean
to polluting fuels and 3% (522)switched between different clean fuels
- …