42 research outputs found
Impact of Vitamin D Supplementation on Arterial Vasomotion, Stiffness and Endothelial Biomarkers in Chronic Kidney Disease Patients
Background: Cardiovascular events are frequent and vascular endothelial function is abnormal in patients with chronic
kidney disease (CKD). We demonstrated endothelial dysfunction with vitamin D deficiency in CKD patients; however the impact of cholecalciferol supplementation on vascular stiffness and vasomotor function, endothelial and bone biomarkers in CKD patients with low 25-hydroxy vitamin D [25(OH)D] is unknown, which this study investigated.
Methods: We assessed non-diabetic patients with CKD stage 3/4, age 17–80 years and serum 25(OH)D ,75 nmol/L. Brachial
artery Flow Mediated Dilation (FMD), Pulse Wave Velocity (PWV), Augmentation Index (AI) and circulating blood biomarkers were evaluated at baseline and at 16 weeks. Oral 300,000 units cholecalciferol was administered at baseline and 8-weeks.
Results: Clinical characteristics of 26 patients were: age 50614 (mean61SD) years, eGFR 41611 ml/min/1.73 m2, males
73%, dyslipidaemia 36%, smokers 23% and hypertensives 87%. At 16-week serum 25(OH)D and calcium increased (43616
to 84629 nmol/L, p,0.001 and 2.3760.09 to 2.4260.09 mmol/L; p = 0.004, respectively) and parathyroid hormone
decreased (10.868.6 to 7.464.4; p = 0.001). FMD improved from 3.163.3% to 6.163.7%, p = 0.001. Endothelial biomarker
concentrations decreased: E-Selectin from 566662123 to 525662058 pg/mL; p = 0.032, ICAM-1, 3.4560.01 to
3.1061.04 ng/mL; p = 0.038 and VCAM-1, 54633 to 42633 ng/mL; p = 0.006. eGFR, BP, PWV, AI, hsCRP, von Willebrand
factor and Fibroblast Growth Factor-23, remained unchanged.
Conclusion: This study demonstrates for the first time improvement of endothelial vasomotor and secretory functions with vitamin D in CKD patients without significant adverse effects on arterial stiffness, serum calcium or FGF-23.
Trial Registration: ClinicalTrials.gov NCT0200571
Editorial of Special Issue of National Identities: Alevism as an ethno-religious identity: Contested boundaries
No abstract for editorial but this is the opening paragraph:
This special issue on Alevism and trans/national Alevi identity critically engages with the relationship between religion, ethnicity and national identity. The core issues are as follows:
• how ethnicity and religion are conceptualised for a relatively invisible ethnic group in different national contexts;
• how religion and ethnicity intersect when Alevism is both a faith and an ethnic identity, especially when conceptions of that identity are contested;
• how identity is shaped through state policies within different national policy contexts and how etic definitions of minority communities are constructed by the state or other agencies with the power to impose them on the community in contrast to the emic or self-definitions of Aleviness from within the Alevi community;
• how despite the fragmented, heterogeneous nature of Alevi communities, there is also a sense of a single, transnational imaginary community, at least for the purposes of political assimilation/integration and activism;
• how education and other arenas of political, religious and cultural engagement at local, national and transnational levels create the possibilities, both positively and negatively, for future action/policy to situate minority ethnic communities
complications in patients with familial partial lipodystrophy
Objective. Familial partial lipodystrophy (FPLD) is a rare genetic disorder characterized by partial lack of subcutaneous fat.Methods. This multicenter prospective observational study included data from 56 subjects with FPLD (18 independent Turkish families). Thirty healthy controls were enrolled for comparison.Results. Pathogenic variants of the LMNA gene were determined in nine families. Of those, typical exon 8 codon 482 pathogenic variants were identified in four families. Analysis of the LMNA gene also revealed exon 1 codon 47, exon 5 codon 306, exon 6 codon 349, exon 9 codon 528, and exon 11 codon 582 pathogenic variants. Analysis of the PPARG gene revealed exon 3 p.Y151C pathogenic variant in two families and exon 7 p.H477L pathogenic variant in one family. A non-pathogenic exon 5 p.R215Qvariant of the LMNB2 gene was detected in another family. Five other families harbored no mutation in any of the genes sequenced. MRI studies showed slightly different fat distribution patterns among subjects with different point mutations, though it was strikingly different in subjects with LMNA p.R349W pathogenic variant. Subjects with pathogenic variants of the PPARG gene were associated with less prominent fat loss and relatively higher levels of leptin compared to those with pathogenic variants in the LMNA gene. Various metabolic abnormalities associated with insulin resistance were detected in all subjects. End-organ complications were observed.Conclusion. We have identified various pathogenic variants scattered throughout the LMNA and PPARG genes in Turkish patients with FPLD. Phenotypic heterogeneity is remarkable in patients with LMNA pathogenic variants related to the site of missense mutations. FPLD, caused by pathogenic variants either in LMNA or PPARG is associated with metabolic abnormalities associated with insulin resistance that lead to increased morbidity. (C) 2017 Elsevier Inc. All rights reserved
In-Situ Fabrication of a Self-Aligned Selective Emitter Silicon Solar Cell Using the Gold Top Contacts To Facilitate the Synthesis of a Nanostructured Black Silicon Antireflective Layer Instead of an External Metal Nanoparticle Catalyst
Silicon solar cells with nanopore-type black silicon antireflection layers and self-aligned selective emitter are reported in which the b-Si structure is prepared without the traditional addition of a catalyst. The contact-assisted chemical etching (CACE) method is reported for the first time, in which the metal top contacts on silicon solar cell surfaces function as the catalysts for b-Si fabrication and the whole etching process can be done in minutes at room temperature. The CACE method is based on the metal-assisted chemical etching solution but without or metal precursor in the Si etchant (HF:H2O2:H2O), and the Au top contacts, or catalysts, are not removed from the solar cell surface after the etching. The effects of composition, concentration and time on the b-Si morphology, surface reflectivity, and solar cell efficiency have been investigated. Higher [HF] and [H2O2] with longer etching time cause collapse of the b-Si nanoporous structure and penetration of the p–n junctions, which are detrimental to the solar cell efficiency. The b-Si solar cell fabricated with the HF:H2O2:H2O volume ratio of 3:3:20 and a 3 min etch time shows the highest efficiency 8.99% along with a decrease of reflectivity from 36.1% to 12.6% compared to that of the nonetched Si solar cell