13 research outputs found

    Studying the Large Scale Structure and interstellar Medium of Galaxies During the Epochs of Peak Cosmic Star formation and Reionization With Infrared Fine Structure Lines

    Get PDF
    Infrared (IR) fine-structure (FS) lines from trace metals in the interstellar medium (ISM) of galaxies are valuable diagnostics of the physical conditions in a broad range of astrophysical environments, such gas irradiated by stellar far-ultraviolet (FUV) photons or X-rays from accreting supermassive black holes, called active galactic nuclei (AGN). The transparency of these lines to dust and their high escape fractions into the intergalactic medium (IGM) render them as useful probes to study the epochs of peak cosmic star formation (SF) and Reionization. Chapter 1 of this thesis is a study of the ISM of the Cloverleaf quasar. Observations of IR FS lines from singly ionized carbon and neutral oxygen have allowed us to assess the physical conditions—parametrized by their gas density and the impingent FUV flux—prevalent in atomic gas heated by stellar FUV photons. We find that UV heating from local SF is not sufficient to explain the measured FS and molecular luminosities, and suggest that X-ray heating from the AGN is required to simultaneously explain both sets of data. The general picture of the Cloverleaf ISM that emerges from our composite model is one where the [CII] and [OI]63 line emission is produced primarily within PDRs and HII regions of a 1.3-kpc wide starburst, which is embedded in a denser XDR component that is the dominant source of heating for the CO gas. The fact that the star-forming PDR and HII region gas is co-spatial with the XDR—and within ∼ 650 pc of the accreting black hole—provides strong evidence that SF is ongoing while immersed in a strong X-ray radiation field provided by the nearby AGN. This finding has implications for the co-evolution of supermassive black holes and their host galaxies. The work in this chapter will be submitted for first-author publication imminently. In Chapter 2, we explore the possibility of studying the redshifted far-IR fine-structure line emission using the three-dimensional (3-D) power spectra obtained with an imaging spectrometer. The intensity mapping approach measures the spatio-spectral fluctuations due to line emission from all galaxies, including those below the individual detection threshold. The technique provides 3-D measurements of galaxy clustering and moments of the galaxy luminosity function. Furthermore, the linear portion of the power spectrum can be used to measure the total line emission intensity including all sources through cosmic time with redshift information naturally encoded. Total line emission, when compared to the total star formation activity and/or other line intensities reveals evolution of the interstellar conditions of galaxies in aggregate. As a case study, we consider measurement of [CII] autocorrelation in the 0.5 \u3c z \u3c 1.5 epoch, where interloper lines are minimized, using far-IR/submm balloon-borne and future space-borne instruments with moderate and high sensitivity, respectively. In this context, we compare the intensity mapping approach to blind galaxy surveys based on individual detections. We find that intensity mapping is nearly always the best way to obtain the total line emission because blind, wide-field galaxy surveys lack sufficient depth and deep pencil beams do not observe enough galaxies in the requisite luminosity and redshift bins. Also, intensity mapping is often the most efficient way to measure the power spectrum shape, depending on the details of the luminosity function and the telescope aperture. The work in this chapter has been published in Uzgil et al. (2014). In the final Chapter, we consider the extension of intensity mapping experiments targeting IR FS lines to the late stages of the Epoch of Reionization (EoR), at z ∼ 7. Intensity mapping experiments of emission lines from the ISM of galaxies are highly complementary to experiments that are aiming to detect the 21 cm power spectrum during the same epoch, as the former is a direct probe of the sources of Reionization, and the latter is a probe of the effect of those sources on the surrounding IGM. Since current and planned observations are limited by cosmic variance at the bright end of the galaxy luminosity function, and will not be able to detect the faintest galaxies responsible for a significant fraction of the ionizing photon supply during EoR, intensity mapping is an appealing approach to study the nature and evolution of galaxies during this stage in the history of the Universe. Again, the utility of FS lines as ISM diagnostics, combined with the ability of intensity mapping to measure redshift-evolution in mean intensity of individual lines or the evolution of line ratios (constructed from multiple cross-power spectra), presents a unique and tantalizing opportunity to directly observe changes in properties of interstellar medium (such as hardness of the ionizing spectrum in galaxies and metallicity) that are important to galaxy evolution studies

    Constraining the ISM Properties of the Cloverleaf Quasar Host Galaxy with Herschel Spectroscopy

    Get PDF
    We present Herschel observations of the far-infrared (FIR) fine-structure (FS) lines [C II]158 μm, [O I]63 μm, [O III]52 μm, and [Si II]35 μm in the z = 2.56 Cloverleaf quasar, and combine them with published data in an analysis of the dense interstellar medium (ISM) in this system. Observed [C II]158 μm, [O I]63 μm, and FIR continuum flux ratios are reproduced with photodissociation region (PDR) models characterized by moderate far-ultraviolet (FUV) radiation fields with G_0 = 0.3–1 × 10^3 and atomic gas densities n_H = 3–5 × 10^3 cm^(−3), depending on contributions to [C II]158 μm from ionized gas. We assess the contribution to the [C II]158 μm flux from an active galactic nucleus (AGN) narrow line region (NLR) using ground-based measurements of the [N II]122 μm transition, finding that the NLR can contribute at most 20%–30% of the observed [C II]158 μm flux. The PDR density and far-UV radiation fields inferred from the atomic lines are not consistent with the CO emission, indicating that the molecular gas excitation is not solely provided via UV heating from local star formation (SF), but requires an additional heating source. X-ray heating from the AGN is explored, and we find that X-ray-dominated region (XDR) models, in combination with PDR models, can match the CO cooling without overproducing the observed FS line emission. While this XDR/PDR solution is favored given the evidence for both X-rays and SF in the Cloverleaf, we also investigate alternatives for the warm molecular gas, finding that either mechanical heating via low-velocity shocks or an enhanced cosmic-ray ionization rate may also contribute. Finally, we include upper limits on two other measurements attempted in the Herschel program: [C II]158 μm in FSC 10214 and [O I]63 μm in APM 08279+5255

    Constraining the ISM Properties of the Cloverleaf Quasar Host Galaxy with Herschel Spectroscopy

    Get PDF
    We present Herschel observations of the far-infrared (FIR) fine-structure (FS) lines [C II]158 μm, [O I]63 μm, [O III]52 μm, and [Si II]35 μm in the z = 2.56 Cloverleaf quasar, and combine them with published data in an analysis of the dense interstellar medium (ISM) in this system. Observed [C II]158 μm, [O I]63 μm, and FIR continuum flux ratios are reproduced with photodissociation region (PDR) models characterized by moderate far-ultraviolet (FUV) radiation fields with G_0 = 0.3–1 × 10^3 and atomic gas densities n_H = 3–5 × 10^3 cm^(−3), depending on contributions to [C II]158 μm from ionized gas. We assess the contribution to the [C II]158 μm flux from an active galactic nucleus (AGN) narrow line region (NLR) using ground-based measurements of the [N II]122 μm transition, finding that the NLR can contribute at most 20%–30% of the observed [C II]158 μm flux. The PDR density and far-UV radiation fields inferred from the atomic lines are not consistent with the CO emission, indicating that the molecular gas excitation is not solely provided via UV heating from local star formation (SF), but requires an additional heating source. X-ray heating from the AGN is explored, and we find that X-ray-dominated region (XDR) models, in combination with PDR models, can match the CO cooling without overproducing the observed FS line emission. While this XDR/PDR solution is favored given the evidence for both X-rays and SF in the Cloverleaf, we also investigate alternatives for the warm molecular gas, finding that either mechanical heating via low-velocity shocks or an enhanced cosmic-ray ionization rate may also contribute. Finally, we include upper limits on two other measurements attempted in the Herschel program: [C II]158 μm in FSC 10214 and [O I]63 μm in APM 08279+5255

    Probing Cosmic Reionization and Molecular Gas Growth with TIME

    Get PDF
    Line intensity mapping (LIM) provides a unique and powerful means to probe cosmic structures by measuring the aggregate line emission from all galaxies across redshift. The method is complementary to conventional galaxy redshift surveys that are object-based and demand exquisite point-source sensitivity. The Tomographic Ionized-carbon Mapping Experiment (TIME) will measure the star formation rate (SFR) during cosmic reionization by observing the redshifted [CII] 158μ\mum line (6z96 \lesssim z \lesssim 9) in the LIM regime. TIME will simultaneously study the abundance of molecular gas during the era of peak star formation by observing the rotational CO lines emitted by galaxies at 0.5z20.5 \lesssim z \lesssim 2. We present the modeling framework that predicts the constraining power of TIME on a number of observables, including the line luminosity function, and the auto- and cross-correlation power spectra, including synergies with external galaxy tracers. Based on an optimized survey strategy and fiducial model parameters informed by existing observations, we forecast constraints on physical quantities relevant to reionization and galaxy evolution, such as the escape fraction of ionizing photons during reionization, the faint-end slope of the galaxy luminosity function at high redshift, and the cosmic molecular gas density at cosmic noon. We discuss how these constraints can advance our understanding of cosmological galaxy evolution at the two distinct cosmic epochs for TIME, starting in 2021, and how they could be improved in future phases of the experiment.Comment: 30 pages, 18 figures, accepted for publication in Ap

    COMAP Early Science: IV. Power Spectrum Methodology and Results

    Full text link
    We present the power spectrum methodology used for the first-season COMAP analysis, and assess the quality of the current data set. The main results are derived through the Feed-feed Pseudo-Cross-Spectrum (FPXS) method, which is a robust estimator with respect to both noise modeling errors and experimental systematics. We use effective transfer functions to take into account the effects of instrumental beam smoothing and various filter operations applied during the low-level data processing. The power spectra estimated in this way have allowed us to identify a systematic error associated with one of our two scanning strategies, believed to be due to residual ground or atmospheric contamination. We omit these data from our analysis and no longer use this scanning technique for observations. We present the power spectra from our first season of observing and demonstrate that the uncertainties are integrating as expected for uncorrelated noise, with any residual systematics suppressed to a level below the noise. Using the FPXS method, and combining data on scales k=0.0510.62Mpc1k=0.051-0.62 \,\mathrm{Mpc}^{-1} we estimate PCO(k)=2.7±1.7×104μK2Mpc3P_\mathrm{CO}(k) = -2.7 \pm 1.7 \times 10^4\mu\textrm{K}^2\mathrm{Mpc}^3, the first direct 3D constraint on the clustering component of the CO(1-0) power spectrum in the literature.Comment: Paper 4 of 7 in series. 18 pages, 11 figures, as accepted in Ap

    COMAP Early Science: III. CO Data Processing

    Full text link
    We describe the first season COMAP analysis pipeline that converts raw detector readouts to calibrated sky maps. This pipeline implements four main steps: gain calibration, filtering, data selection, and map-making. Absolute gain calibration relies on a combination of instrumental and astrophysical sources, while relative gain calibration exploits real-time total-power variations. High efficiency filtering is achieved through spectroscopic common-mode rejection within and across receivers, resulting in nearly uncorrelated white noise within single-frequency channels. Consequently, near-optimal but biased maps are produced by binning the filtered time stream into pixelized maps; the corresponding signal bias transfer function is estimated through simulations. Data selection is performed automatically through a series of goodness-of-fit statistics, including χ2\chi^2 and multi-scale correlation tests. Applying this pipeline to the first-season COMAP data, we produce a dataset with very low levels of correlated noise. We find that one of our two scanning strategies (the Lissajous type) is sensitive to residual instrumental systematics. As a result, we no longer use this type of scan and exclude data taken this way from our Season 1 power spectrum estimates. We perform a careful analysis of our data processing and observing efficiencies and take account of planned improvements to estimate our future performance. Power spectrum results derived from the first-season COMAP maps are presented and discussed in companion papers.Comment: Paper 3 of 7 in series. 26 pages, 23 figures, submitted to Ap

    COMAP Early Science: V. Constraints and Forecasts at z3z \sim 3

    Full text link
    We present the current state of models for the z3z\sim3 carbon monoxide (CO) line-intensity signal targeted by the CO Mapping Array Project (COMAP) Pathfinder in the context of its early science results. Our fiducial model, relating dark matter halo properties to CO luminosities, informs parameter priors with empirical models of the galaxy-halo connection and previous CO(1-0) observations. The Pathfinder early science data spanning wavenumbers k=0.051k=0.051-0.620.62\,Mpc1^{-1} represent the first direct 3D constraint on the clustering component of the CO(1-0) power spectrum. Our 95% upper limit on the redshift-space clustering amplitude Aclust70μA_{\rm clust}\lesssim70\,\muK2^2 greatly improves on the indirect upper limit of 420μ420\,\muK2^2 reported from the CO Power Spectrum Survey (COPSS) measurement at k1k\sim1\,Mpc1^{-1}. The COMAP limit excludes a subset of models from previous literature, and constrains interpretation of the COPSS results, demonstrating the complementary nature of COMAP and interferometric CO surveys. Using line bias expectations from our priors, we also constrain the squared mean line intensity-bias product, Tb250μ\langle{Tb}\rangle^2\lesssim50\,\muK2^2, and the cosmic molecular gas density, ρH2<2.5×108M\rho_\text{H2}<2.5\times10^8\,M_\odot\,Mpc3^{-3} (95% upper limits). Based on early instrument performance and our current CO signal estimates, we forecast that the five-year Pathfinder campaign will detect the CO power spectrum with overall signal-to-noise of 9-17. Between then and now, we also expect to detect the CO-galaxy cross-spectrum using overlapping galaxy survey data, enabling enhanced inferences of cosmic star-formation and galaxy-evolution history.Comment: Paper 5 of 7 in series. 17 pages + appendix and bibliography (30 pages total); 15 figures, 6 tables; accepted for publication in ApJ; v3 reflects the accepted version with minor changes and additions to tex

    COMAP Early Science: I. Overview

    Full text link
    The CO Mapping Array Project (COMAP) aims to use line intensity mapping of carbon monoxide (CO) to trace the distribution and global properties of galaxies over cosmic time, back to the Epoch of Reionization (EoR). To validate the technologies and techniques needed for this goal, a Pathfinder instrument has been constructed and fielded. Sensitive to CO(1-0) emission from z=2.4z=2.4-3.43.4 and a fainter contribution from CO(2-1) at z=6z=6-8, the Pathfinder is surveying 1212 deg2^2 in a 5-year observing campaign to detect the CO signal from z3z\sim3. Using data from the first 13 months of observing, we estimate PCO(k)=2.7±1.7×104μK2Mpc3P_\mathrm{CO}(k) = -2.7 \pm 1.7 \times 10^4\mu\mathrm{K}^2 \mathrm{Mpc}^3 on scales k=0.0510.62Mpc1k=0.051-0.62 \mathrm{Mpc}^{-1} - the first direct 3D constraint on the clustering component of the CO(1-0) power spectrum. Based on these observations alone, we obtain a constraint on the amplitude of the clustering component (the squared mean CO line temperature-bias product) of Tb2<49\langle Tb\rangle^2<49 μ\muK2^2 - nearly an order-of-magnitude improvement on the previous best measurement. These constraints allow us to rule out two models from the literature. We forecast a detection of the power spectrum after 5 years with signal-to-noise ratio (S/N) 9-17. Cross-correlation with an overlapping galaxy survey will yield a detection of the CO-galaxy power spectrum with S/N of 19. We are also conducting a 30 GHz survey of the Galactic plane and present a preliminary map. Looking to the future of COMAP, we examine the prospects for future phases of the experiment to detect and characterize the CO signal from the EoR.Comment: Paper 1 of 7 in series. 18 pages, 16 figures, submitted to Ap

    The ALMA Spectroscopic Survey in the HUDF: A Search for [C ii] Emitters at 6 ≤ z ≤ 8

    Get PDF
    16 pages, 6 figures, accepted for publication in ApJInternational audienceThe ALMA Spectroscopic Survey in the Hubble Ultra Deep Field (ASPECS) Band 6 scan (212-272 GHz) covers potential [CII] emission in galaxies at 6z86\leq z \leq8 throughout a 2.9 arcmin2^2 area. By selecting on known Lyman-α\alpha emitters (LAEs) and photometric dropout galaxies in the field, we perform targeted searches down to a 5σ\sigma [CII] luminosity depth L[CII]2.0×108L_{\mathrm{[CII]}}\sim2.0\times10^8 L_{\odot}, corresponding roughly to star formation rates (SFRs) of 1010-2020 M_{\odot} yr1^{-1} when applying a locally calibrated conversion for star-forming galaxies, yielding zero detections. While the majority of galaxies in this sample are characterized by lower SFRs, the resulting upper limits on [CII] luminosity in these sources are consistent with the current literature sample of targeted ALMA observations of z=6z=6-77 LAEs and Lyman-break galaxies (LBGs), as well as the locally calibrated relations between L[CII]L_{\mathrm{[CII]}} and SFR -- with the exception of a single [CII]-deficient, UV luminous LBG. We also perform a blind search for [CII]-bright galaxies that may have been missed by optical selections, resulting in an upper limit on the cumulative number density of [CII] sources with L[CII]>2.0×108L_{\mathrm{[CII]}}>2.0\times10^8 L_{\odot} (5σ5\sigma ) to be less than 1.8×1041.8\times10^{-4} Mpc3^{-3} (90% confidence level). At this luminosity depth and volume coverage, we present an observed evolution of the [CII] luminosity function from z=6z=6-88 to z0z\sim0 by comparing the ASPECS measurement to literature results at lower redshift

    The ALMA Spectroscopic Survey in the HUDF: Constraining Cumulative CO Emission at 1 ≲ z ≲ 4 with Power Spectrum Analysis of ASPECS LP Data from 84 to 115 GHz

    Get PDF
    International audienceWe present a power spectrum analysis of the ALMA Spectroscopic Survey Large Program (ASPECS LP) data from 84 to 115 GHz. These data predominantly probe small-scale fluctuations (k = 10-100 h Mpc-1) in the aggregate CO emission in galaxies at 1≲ z ≲ 4. We place an integral constraint on CO luminosity functions (LFs) in this redshift range via a direct measurement of their second moments in the three-dimensional (3D) autopower spectrum, finding a total CO shot-noise power {P}CO,{CO}}({k}CO(2-1)})≤slant 1.9× {10}2 μK2 (Mpc h -1)3. This upper limit (3σ) is consistent with the observed ASPECS CO LFs in Decarli et al. but rules out a large space in the range of {P}CO,{CO}}({k}CO(2-1)}) inferred from these LFs, which we attribute primarily to large uncertainties in the normalization Φ* and knee L * of the Schechter-form CO LFs at z > 2. Also, through power spectrum analyses of ASPECS LP data with 415 positions from galaxies with available optical spectroscopic redshifts, we find that contributions to the observed mean CO intensity and shot-noise power of MUSE galaxies are largely accounted for by ASPECS blind detections. Finally, we sum the fluxes from individual blind CO detections to yield a lower limit on the mean CO surface brightness at 99 GHz of CO}> =0.55+/- 0.02 μK, which we estimate represents 68%-80% of the total CO surface brightness at this frequency
    corecore