133 research outputs found

    States in Process Calculi

    Full text link
    Formal reasoning about distributed algorithms (like Consensus) typically requires to analyze global states in a traditional state-based style. This is in contrast to the traditional action-based reasoning of process calculi. Nevertheless, we use domain-specific variants of the latter, as they are convenient modeling languages in which the local code of processes can be programmed explicitly, with the local state information usually managed via parameter lists of process constants. However, domain-specific process calculi are often equipped with (unlabeled) reduction semantics, building upon a rich and convenient notion of structural congruence. Unfortunately, the price for this convenience is that the analysis is cumbersome: the set of reachable states is modulo structural congruence, and the processes' state information is very hard to identify. We extract from congruence classes of reachable states individual state-informative representatives that we supply with a proper formal semantics. As a result, we can now freely switch between the process calculus terms and their representatives, and we can use the stateful representatives to perform assertional reasoning on process calculus models.Comment: In Proceedings EXPRESS/SOS 2014, arXiv:1408.127

    On the Distributability of Mobile Ambients

    Get PDF
    Modern society is dependent on distributed software systems and to verify them different modelling languages such as mobile ambients were developed. To analyse the quality of mobile ambients as a good foundational model for distributed computation, we analyse the level of synchronisation between distributed components that they can express. Therefore, we rely on earlier established synchronisation patterns. It turns out that mobile ambients are not fully distributed, because they can express enough synchronisation to express a synchronisation pattern called M. However, they can express strictly less synchronisation than the standard pi-calculus. For this reason, we can show that there is no good and distributability-preserving encoding from the standard pi-calculus into mobile ambients and also no such encoding from mobile ambients into the join-calculus, i.e., the expressive power of mobile ambients is in between these languages. Finally, we discuss how these results can be used to obtain a fully distributed variant of mobile ambients.Comment: In Proceedings EXPRESS/SOS 2018, arXiv:1808.08071. Conference version of arXiv:1808.0159

    Breaking Symmetries

    Get PDF
    A well-known result by Palamidessi tells us that {\pi}mix (the {\pi}-calculus with mixed choice) is more expressive than {\pi}sep (its subset with only separate choice). The proof of this result argues with their different expressive power concerning leader election in symmetric networks. Later on, Gorla of- fered an arguably simpler proof that, instead of leader election in symmetric networks, employed the reducibility of "incestual" processes (mixed choices that include both enabled senders and receivers for the same channel) when running two copies in parallel. In both proofs, the role of breaking (ini- tial) symmetries is more or less apparent. In this paper, we shed more light on this role by re-proving the above result-based on a proper formalization of what it means to break symmetries-without referring to another layer of the distinguishing problem domain of leader election. Both Palamidessi and Gorla rephrased their results by stating that there is no uniform and reason- able encoding from {\pi}mix into {\pi}sep . We indicate how the respective proofs can be adapted and exhibit the consequences of varying notions of uniformity and reasonableness. In each case, the ability to break initial symmetries turns out to be essential

    What Is a ‘Good’ Encoding of Guarded Choice?

    Get PDF
    The pi-calculus with synchronous output and mixed-guarded choices is strictly more expressive than the pi-calculus with asynchronous output and no choice. As a corollary, Palamidessi recently proved that there is no fully compositional encodingfrom the former into the latter that preserves divergence-freedom and symmetries. This paper shows that there are nevertheless `good' encodings between these calculi.In detail, we present a series of encodings for languages with (1) input-guarded choice, (2) both input- and output-guarded choice, and (3) mixed-guarded choice, and investigate them with respect to compositionality and divergence-freedom. The firstand second encoding satisfy all of the above criteria, but various `good' candidates for the third encoding - inspired by an existing distributed implementation - invalidate one or the other criterion. While essentially confirming Palamidessi's result, our studysuggests that the combination of strong compositionality and divergence-freedom is too strong for more practical purposes

    Inter-Blockchain Protocols with the Isabelle Infrastructure Framework

    Get PDF
    The main incentives of blockchain technology are distribution and distributed change, consistency, and consensus. Beyond just being a distributed ledger for digital currency, smart contracts add transaction protocols to blockchains to execute terms of a contract in a blockchain network. Inter-blockchain (IBC) protocols define and control exchanges between different blockchains. The Isabelle Infrastructure framework {has been designed to} serve security and privacy for IoT architectures by formal specification and stepwise attack analysis and refinement. A major case study of this framework is a distributed health care scenario for data consistency for GDPR compliance. This application led to the development of an abstract system specification of blockchains for IoT infrastructures. In this paper, we first give a summary of the concept of IBC. We then introduce an instantiation of the Isabelle Infrastructure framework to model blockchains. Based on this we extend this model to instantiate different blockchains and formalize IBC protocols. We prove the concept by defining the generic property of global consistency and prove it in Isabelle

    What is a ‘Good’ Encoding of Guarded Choice?

    Get PDF
    The pi-calculus with synchronous output and mixed-guarded choices is strictly more expressive than the pi-calculus with asynchronous output and no choice. This result was recently proved by Palamidessi and, as a corollary, she showed that there is no fully compositional encoding from the former into the latter that preserves divergence-freedom and symmetries. This paper argues that there are nevertheless `good' encodings between these calculi. In detail, we present a series of encodings for languages with (1) input-guarded choice, (2) both input- and output-guarded choice, and (3) mixed-guarded choice, and investigate them with respect to compositionality and divergence-freedom. The first and second encoding satisfy all of the above criteria, but various `good' candidates for the third encoding - inspired by an existing distributed implementation - invalidate one or the other criterion. While essentially confirming Palamidessi's result, our study suggests that the combination of strong compositionality and divergence-freedom is too strong for more practical purposes

    Adding Priority to Event Structures

    Get PDF
    Event Structures (ESs) are mainly concerned with the representation of causal relationships between events, usually accompanied by other event relations capturing conflicts and disabling. Among the most prominent variants of ESs are Prime ESs, Bundle ESs, Stable ESs, and Dual ESs, which differ in their causality models and event relations. Yet, some application domains require further kinds of relations between events. Here, we add the possibility to express priority relationships among events. We exemplify our approach on Prime, Bundle, Extended Bundle, and Dual ESs. Technically, we enhance these variants in the same way. For each variant, we then study the interference between priority and the other event relations. From this, we extract the redundant priority pairs-notably differing for the types of ESs-that enable us to provide a comparison between the extensions. We also exhibit that priority considerably complicates the definition of partial orders in ESs.Comment: In Proceedings EXPRESS/SOS 2013, arXiv:1307.690

    Matching in the Pi-Calculus (Technical Report)

    Full text link
    We study whether, in the pi-calculus, the match prefix---a conditional operator testing two names for (syntactic) equality---is expressible via the other operators. Previously, Carbone and Maffeis proved that matching is not expressible this way under rather strong requirements (preservation and reflection of observables). Later on, Gorla developed a by now widely-tested set of criteria for encodings that allows much more freedom (e.g. instead of direct translations of observables it allows comparison of calculi with respect to reachability of successful states). In this paper, we offer a considerably stronger separation result on the non-expressibility of matching using only Gorla's relaxed requirements.Comment: This report extends a paper in EXPRESS/SOS'14 and provides the missing proof
    • …
    corecore