
Inter-Blockchain Protocols with the Isabelle
Infrastructure Framework
Florian Kammüller
Middlesex University London, UK
Technische Universität Berlin, Germany
f.kammueller@mdx.ac.uk

Uwe Nestmann
Technische Universität Berlin, Germany
firstname.secondname@tu-berlin.de

Abstract
The main incentives of blockchain technology are distribution and distributed change, consistency,
and consensus. Beyond just being a distributed ledger for digital currency, smart contracts add
transaction protocols to blockchains to execute terms of a contract in a blockchain network. Inter-
blockchain (IBC) protocols define and control exchanges between different blockchains.

The Isabelle Infrastructure framework has been designed to serve security and privacy for IoT
architectures by formal specification and stepwise attack analysis and refinement1. A major case study
of this framework is a distributed health care scenario for data consistency for GDPR compliance.
This application led to the development of an abstract system specification of blockchains for IoT
infrastructures.

In this paper, we first give a summary of the concept of IBC. We then introduce an instantiation
of the Isabelle Infrastructure framework to model blockchains. Based on this we extend this model
to instantiate different blockchains and formalize IBC protocols. We prove the concept by defining
the generic property of global consistency and prove it in Isabelle.

2012 ACM Subject Classification Networks → Peer-to-peer protocols; Networks → Security proto-
cols; Software and its engineering → Software verification and validation

Keywords and phrases Blockchain, smart contracts, interactive theorem proving, inter-blockchain
protocols

Digital Object Identifier 10.4230/OASIcs.FMBC.2020.11

Funding Florian Kammüller : Research for this paper has been supported by CHIST-ERA grant
101112, SUCCESS.

1 Introduction

Inter-blockchain (IBC) protocols is a concept driven by industry. It serves to provide “reliable
and secure communication between deterministic processes” [24] that run on independent
blockchains or distributed ledgers. Practical application of IBC are for example the Cosmos
Hub [5] “the first of thousands of interconnected blockchains” with the purpose of facilitating
transfers between blockchains.

A formal specification of IBC within a Higher Order Logic theorem prover like Isabelle
has the advantage that it provides a very rigorous model of the IBC concepts enabling
mechanically verified properties. In principle, from such a formalization, executable code
into many standard programming languages like Haskell or Scala can be generated. However,
such code generation would always be understood to provide only reference implementations.
Moreover, the major insights from specifying a practice oriented concept like IBC is that

1 In this paper we do neither illustrate attack tree analysis nor security refinement.

© Florian Kammüller and Uwe Nestmann;
licensed under Creative Commons License CC-BY

2nd Workshop on Formal Methods for Blockchains (FMBC 2020).
Editors: Bruno Bernardo and Diego Marmsoler; Article No. 11; pp. 11:1–11:12

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/360869125?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0001-5839-5488
mailto:f.kammueller@mdx.ac.uk
mailto:firstname.secondname@tu-berlin.de
https://doi.org/10.4230/OASIcs.FMBC.2020.11
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

11:2 IBC in Isabelle

the formal specification is mainly useful to provide a more abstract yet more precise model
that carefully picks out the central concepts used within the application, here IBC. In doing
this, the used methodology, here Isabelle, can provide as a framework existing work to
immediately support the IBC specification. We rely heavily on the Isabelle Infrastructure
framework [15] as an existing instantiation of Isabelle/HOL (which we will simply refer to
as Isabelle within this paper). This framework offers a range of predefined concepts like
Kripke structures and CTL, as well as state transition relations, actors, and policies that
can be readily instantiated to the current application of IBC. Besides extracting a more
abstract but precise specification of IBC, the resulting scientific advantage is to show that
as a product of this process it becomes feasible to lay open crucial basic properties that
result from the application domain (blockchain security). As the main result of this kind, we
formally establish a global consistency property, define it formally on our IBC model and
prove a consistency preservation theorem that shows the safety of our formal IBC semantics.

The contributions of this paper are
summarizing the main features of IBC into a logical conceptual model,
building a formal model of IBC in Isabelle as an instance of the Isabelle Infrastructure
framework but extending it with sets of infrastructures,
illustrating the feasibility of the formal model by expressing a global consistency property
and formally proving it in Isabelle.

The last point seems to suggest that IBC can be seen as a “blockchain of blockchains”.

1.1 Inter-blockchain protocols (IBC)
In this section, we summarize the main concepts of the IBC following the practice-oriented
description [24]: we refer to the relevant section of the principal documentation[24], giving
precise reference to section numbers. Figure 1 is a copy an overview architectural sketch
provided by the main specification [24].

Figure 1 Architecture of IBC[24].

One of the main abstractions used in IBC comprising its architectural description is the
actor [24, Section 1.1.1] which is the same as a user. Instances given to exemplify this are: a
human end user, a module or smart contract running on a blockchain, or an off-chain relayer
process. This relayer process represents the logical core of the IBC. It is a process that is
outside any of the blockchains (”off-chain” [24]) that is responsible for “relaying” IBC data
packets between blockchains. It can scan their states and submit data.

The notion of state machine is very central in IBC: the terms machine, chain, blockchain, or
ledger are used interchangeably [24, Section 1.1.2] to denote a state machine that implements
part or all of the IBC. In using the Isabelle Infrastructure framework – whose core part is
the formal definition of a state machine semantics through a state transition relation – we
follow this important architectural spirit.

F. Kammüller and U. Nestmann 11:3

Consensus is not explicitly defined but somewhat implicitly by the notion of consensus
algorithm “the protocol used by the set of processes operating a distributed ledger to come
to agreement on the same state” [24, 1.1.5] where “Consensus state” is defined next as
information about the “state of a consensus algorithm” [24, 1.1.6]. We can safely understand
consensus to mean the agreement of the actors on the next state with respect to the state
transition relation.

1.2 Isabelle Infrastructure framework

The Isabelle Infrastructure is built in the interactive generic theorem prover Isabelle/HOL
[19]. As a framework, it supports formalization and proof of systems with actors and policies.
It originally emerged from verification of insider threat scenarios but it soon became clear
that the theoretical concepts, like temporal logic combined with Kripke structures and a
generic notion of state transitions were very suitable to be combined with attack trees into a
formal security engineering process [3] and framework [10].

Figure 2 gives an overview of the Isabelle Infrastructure framework with its layers of
object-logics – each level below embeds the one above showing the novel contribution of
this paper in blue on the top. The formal model of IBC in Isabelle uses the Isabelle

Kripke structures & CTL

Attack trees

Refinement

Infrastructures
for IBC

Figure 2 Generic Isabelle Infrastructure framework applied to Inter-blockchain protocols (IBC).

Infrastructure framework instantiating it by reusing its concept of actors for users, processes
running on blockchains, or relayers running off-chain. Technically, an Isabelle theory file
IBC.thy builds on top of the theories for Kripke structures and CTL (MC.thy), attack trees
(AT.thy), and security refinement (Refinement.thy). Thus all these concepts can be used
to specify the formal model for IBC, express relevant and interesting properties and conduct
interactive proofs (with the full support of the powerful and highly automated proof support
of Isabelle). The IBC theory itself is an adaptation of the Infrastructure theory of the Isabelle
Infrastructure framework and reuses (or slightly adapts) existing concepts. In the remainder
of this paper, we introduce the model that we conceived for IBC. All Isabelle sources are
available online [12].

FMBC 2020

11:4 IBC in Isabelle

2 IBC in Isabelle

2.1 Overview
In the following, we give a detailed description of the central parts of the formal Isabelle
theory of IBC, pointing out and motivating special design decisions. In addition to the short
general intro to the Isabelle Infrastructure framework of the previous section, we provide
explanations of all used Isabelle specific specification concepts on the fly.

The IBC is supposed to work for any type of blockchain, for example, Bitcoin or Ethereum,
therefore the formal model abstracts from specific details of a specific blockchain. Similar to
the IBC specification [24], the Isabelle formalization focuses on the central IBC concepts
as depicted in Figure 1: ledgers, actors or modules, respectively, and the relayer process
interacting via the IBC protocol with the modules within the distributed ledgers. In our
formal model based on the Isabelle Infrastructure framework, we represent each blockchain
as an infrastructure containing nodes on which the modules (actors) are running. Data items
are assigned to actors. The ledgers of each infrastructure keep control over the data items.
That is, a ledger is a unique assignment that controls the access to a data item and keeps a
record of where the data item resides within this and other blockchains. The IBC enables
just that: a unified view over a whole range of heterogeneous blockchains that exchange data
consistently. Therefore, our formal model goes beyond the usual application of the Isabelle
Infrastructure framework, e.g. [8], and considers sets of infrastructures (representing different
blockchains).

2.2 Ledgers
Actors are a general concept provided by the Isabelle Infrastructure framework and can be
used directly to represent the actor concept in IBC.
typedecl actor
type_synonym identity = string
consts Actor :: string ⇒ actor

Similar to the general Infrastructure framework, actors can perform actions. However, in
this instantiation to IBC we redefine the actions representing the central activities of the
relayer scanning each blockchain’s state and submitting transactions (see Section 1.1).
datatype action = scan | submit

The Decentralized Label Model (DLM) [17] allows labeling data with owners and readers.
We also adopt this definition of security labeled data as already formalised in [10]. Labeled
data is given by the type dlm × data where data can be any data type.
type_synonym data = string
type_synonym dlm = identity × identity set

One major achievement of a blockchain is that it acts like a distributed ledger, that is,
a global accounting book. A distributed ledger is a unique consistent transcript keeping
track of protected data across a distributed system. In our application, the ledger must
mainly keep track of where the data resides for any labeled data item. To express the system
requirement that processing may not change the security and privacy labels of data, we
introduce a type of security and privacy preserving functions.
typedef label_fun = {f :: dlm × data ⇒ dlm × data.

∀ x. fst x = fst (f x)}

F. Kammüller and U. Nestmann 11:5

We formalize a ledger thus as a type of partial functions that maps a data item to a pair of
the data’s label and the set of locations where the data item is registered. Since all function
in HOL are total, we use a standard Isabelle way of representing partial functions using the
type constructor option. This type constructor lifts every type α to the type α option
which consists of the unique constant None and the range of elements Some x for all x∈ α.
type_synonym ledger = data ⇒ (dlm × node set)option

Since the type ledger is a function type, it automatically constrains each data item d in its
domain to have at most one range element Some(l,N), that is, at most one valid data label
l of type dlm and a list of current blockchain nodes N at which this data item is transcribed.
lemma ledger_def_prop: ∀ lg:: ledger. ∀ d:: data.

lg d = None | (∃! l. (∃! L. lg d = Some(l, L)))

In an earlier application of the Isabelle Infrastructure framework to IoT security and
privacy[15], we established a formal notion of blockchain. However, there we used a more
explicit logical characterization in an Isabelle type definition which creates additional proof
effort and makes formulas more complex. The current representation of the ledger type
as a partial function type is more concise and implicitly carries the requested uniqueness
properties. Note that the defining property of the ledger type is now proved from the used
type constructors by the above lemma instead of being specified into the type as in the earlier
formalization [15].

2.3 Infrastructures as blockchains
The datatype sc_fun formalizes any action that is sent or received between different block-
chains and may have effects on the labeled data. Therefore the inputs to the send and receive
messages are two identities of sender and receiver as well as the dlm label and the concerned
data.
datatype sc_fun = Send identity × identity × dlm × data

| Receive identity × identity × dlm × data

In addition to specifying the potential types of smart contracts, we need to provide a way
of keeping track of the transactions that are executed within a blockchain. To this end,
we define the following type of transaction_record which is a list of all executed smart
contracts.
type_synonym transaction_record = sc_fun list

The central component that builds the system state is an infrastructure. Since we use
the Isabelle Infrastructure framework, we consider blockchains as infrastructures. The
essential architecture of such an infrastructure is a simple graph of blockchain nodes on
which the processes (actors) reside given as the first component (node ×node)set of the
below datatype igraph. Besides this basic architecture, this infrastructure graph also stores
the other components of the blockchain. The second input is a function that assigns a set
of actor identities to each node in the graph representing the current location of the actors.
The next input associates actors to a pair of string sets by a pair-valued function whose first
range component is a set describing the credentials in the possession of an actor and the
second component is a set defining the roles the actor can take on. An infrastructure graph
also allows assigning a string to each location to represent some current state information of
that location. Finally, the ledger is added as a separate component as well as the transaction
record.

FMBC 2020

11:6 IBC in Isabelle

datatype igraph =
Lgraph (node × node)set

node ⇒ node set
actor ⇒ (string set × string set)
node ⇒ string
ledger
transaction_record

Corresponding projection functions for each of the components of an infrastructure graph
are provided. They are omitted here for brevity but are available in the online version [12]);
they are named gra for the actual set of pairs of locations, agra for the actor map, cgra for
the credentials, and lgra for the state of a location ledgra for the ledger component in the
graph and trec for the transaction record. Infrastructures contain an infrastructure graph
and a policy given by a function that assigns local policies over a graph to all locations of
the graph.

datatype infrastructure =
Infrastructure igraph

[igraph , location] ⇒ apolicy set

There are projection functions graphI and delta when applied to an infrastructure return
the graph and the policy, respectively.

Policies specify the expected behaviour of actors of an infrastructure. We define the
behaviour of actors using a predicate enables: within infrastructure I, at location l, an
actor h is enabled to perform an action a if there is a pair (p,e) in the local policy of l –
delta I l projects to the local policy – such that action a is in the action set e and the
policy predicate p holds for actor h.

enables I l h a = ∃ (p,e) ∈ delta I l. a ∈ e ∧ p h

Compared to the applications of the Isabelle Infrastructure framework, e.g. [8], we do not
make use of policies to model the constraints of our application. However different to previous
applications, the IBC challenges the framework in other ways leading to slight extensions.

2.4 Relayer and set of blockchains
To model the relayer, we also use infrastructures: the relayer is a distinguished infrastructure.
It could be thought of as another distributed application with various relayer processes to
avoid bottlenecks but for simplicity, we assume that there is one specific actor ”relayer”
that resides on a specific node in the relayer infrastructure.

We express protocols as traces of execution steps of IBC transaction steps, that is,
lists of smart contracts sc_fun (see previous section). Using traces of execution steps to
represent protocols, follows the classical method of the inductive approach to security protocol
verification originally devised by Paulson [22] and already successfully used for the Isabelle
Infrastructure framework, for example, [13] and more recently [11, 9].

datatype ibc_protocol = Protocol sc_fun list set

The datatype blockchainset puts together the IBC protocol as a triple: as the first
element it includes the IBC protocol, the second element is the list of infrastructures where
each element is one blockchain involved in the IBC, and the third element is a single
distinguished infrastructure, the relayer.

F. Kammüller and U. Nestmann 11:7

datatype blockchainset = Infs ibc_protocol
infrastructure list
infrastructure

To round off these new datatypes, we provide additional projection functions and constructors.
For a given blockchain Il, the projection trcs Il returns the sc_fun list set representing
the protocol, the projection the_Il returns the list of infrastructures of all involved block-
chains, and relayer Il gives the distinguished infrastructure, the third element, which is
the relayer infrastructure. To facilitate handling of data transactions, we define some update
functions: the function application upd_ld d lN I updates a ledger at the data point d to
now contain the pair lN of a dlm label and a set of nodes of residences of the data. Scaling
this up to the level of infrastructures, the function application upd_Il d lN Il updates all
blockchains in the infrastructure list of the blockchainset Il using the former ledger update
upd_ld. A function replace allows to replace an infrastructure I in a blockchainset Il. See
the online resources [12] for technical details and implementations of these definitions.

2.5 Consensus
The consensus algorithm may be different for each blockchain employed in the IBC. Therefore,
we cannot make any assumptions at the general specification level of the IBC about it. Yet,
we still want to use it in the description of the IBC protocol semantics. Therefore, we apply
a trick: we declare Consensus to be a constant at the level of the specification of the IBC.

consts Consensus :: infrastructure ⇒ blockchainset ⇒ blockchainset

In Isabelle this means that Consensus is a function mapping an infrastructure and a system
state of type blockchain to blockchain but there is no semantics attached to this constant.
The constant is part of the theory IBC.thy and can be used in it like any other defined
element but it has no meaning. However, a semantics can be later attached to it in an
application of the IBC theory to specific blockchains. This could be done in the current
context for example using a definition in a locale [14].

locale ConsensusExample =
fixes cons_algo :: infrastructure ⇒ blockchainset ⇒ infrastructure
defines cons_algo_def: cons_algo I Il = ...
fixes Consensus :: infrastructure ⇒ blockchainset ⇒ blockchainset
defines Consensus_def: Consensus I Il = replace (cons_algo I Il) I Il

The predicate Consensus redefines the semantics within the locale ConsensusExample. The
first locale definition is omitted here for simplicity. We could imagine that it is a description
of a consensus algorithm that can depend on all the state constituents, like actors, nodes, and
policies of the blockchain I but also of the surrounding blockchainset including the relayer
state and the current protocol state. The definition of the constant Consensus lifts the
algorithm to the blockchain by using the replace function defined as part of the infrastructure
for blockchainsets (see Section 2.4 or refer to the Isabelle code [12]).

2.6 IBC state transition semantics
The semantics of the IBC state machines is defined by a state transition relation over
blockchain sets. That is, we define a syntactic infix notation Il → Il’ to denote that
blockchain sets Il and Il’ are in this relation.

FMBC 2020

11:8 IBC in Isabelle

inductive state_transition_in ::
[blockchainset , blockchainset] ⇒ bool "(_ → _)"

The rules of the inductive definition state_transition_in allow the definition of the
intended behaviour of the relayer scanning an arbitrary blockchain (see Section 1.1). The
relayer stores the results in its own transaction record. The following rule scan is the first
of two inductive definition rules defining the transition relation →: if an infrastructure I
is in the blockchainset Il, the actor (process, module) resides at node n in the graph G
of I; R is the relayer and thus enabled to scan. The follow up state Il’ of Il is given by
extending any current protocol trace l using the specially defined function insertp by the
transaction Send(a,b,(a,as), d). Also the relayer’s trace record trec R is extended by
the same transaction.

scan : inbc I Il =⇒ G = graphI I =⇒ a @G n =⇒ n ∈ nodes G =⇒
R = graphI (relayer Il) =⇒ r @R n’ =⇒ n’ @R nodes R =⇒
relrole (relayer Il) (Actor r) =⇒
enables I n (Actor r) scan =⇒
ledgra G d = Some ((a, as), N) =⇒ r ∈ as =⇒
R’ = Infrastructure

(Lgraph (gra R)(agra R)(cgra R)(lgra R)
((ledgra R)(d := Some((a, as),N)))
(trec R))

(delta (relayer Il)) =⇒
l ∈ trcs Il =⇒ Consensus I Il = Il ’ =⇒
Il ’ = insertp ((Send(a,b,(a,as), d)) # l) (replrel R’ Il)
=⇒ Il → Il ’

Additionally, the relayer can submit data onto an arbitrary blockchain (see Section 1.1). The
second rule submit of → defines its semantics: between the infrastructures I and J which
are both in the blockchain set Il the relayer R can submit data d from an owner a to an
owner b if the ledger component ledgra R of the relayer’s infrastructure R is updated to
the new owner in both blockchains. The update is achieved using the function update :=
of Isabelle’s function theory updating the point d to the new value Some((b, bs), N). In
the construction of the next state blockchainset Il’ the specially defined update operators
mentioned in Section 2.4 are used: replrel for updating the relayer and bc_upd for the
infrastructure list representing the “client” blockchains. Note the latter realizes the consistent
update in both involved infrastructures I and J.

submit : G = graphI I =⇒ inbc I Il =⇒ a @G n =⇒ n ∈ nodes G =⇒
ledgra G d = Some ((a, as), N) =⇒
H = graphI J =⇒ inbc J Il =⇒ b @H n’ =⇒ n’ ∈ nodes H =⇒
ledgra H d = Some ((a, as), N) =⇒
R = graphI (relayer Il) =⇒ r @R n’’ =⇒ n’’ ∈ nodes R =⇒
relrole (relayer Il) (Actor r) =⇒
enables J n’ (Actor r) submit =⇒
r ∈ as =⇒
R’ = Infrastructure

(Lgraph (gra R)(agra R)(cgra R)(lgra R)
((ledgra R)(d := Some((b, bs),N)))
(trec R))

(delta (relayer Il)) =⇒
Il’ = insertp (Receive(a,b,(a,as),d)# l)

(replrel R’ (bc_upd d ((b,as), N) Il)) =⇒

F. Kammüller and U. Nestmann 11:9

Consensus J Il = Il ’
=⇒ Il → Il’

The real advantage of the Isabelle Infrastructure framework comes into play when using
the possibility of instantiation of axiomatic type classes provided by Isabelle. Since state
transitions have been defined by an axiomatic type class in the framework within the theory
for Kripke structures and CTL, we can now instantiate blockchainsets as state and thereby
inherit the entire logic, constructors and theorems.

instantiation blockchainset :: state

3 Global consistency

To illustrate the use of the abstract formal model of IBC presented in this paper, we show
that we can exhibit an important property: global consistency. That is, if the IBC scans and
submits between blockchains it must not introduce inconsistencies.

Expressing this property alone represents a proof of concept since it shows that our IBC
model is detailed enough to capture explicitly the notion of consistent data representation
across different blockchains. Proving the property is a non-trivial contribution (see proof
scripts [12]) that helped exhibiting a range of useful auxiliary definitions and lemmas as we
will highlight in this section when discussing the global consistency theorem. The proofs were
greatly helped by the recent advances in proof automation in Isabelle using sledgehammer [21].
The fact that the property is provable shows that the model and in particular its semantics
conform to the intuition described in [24]. The formalization and proof also highlight the
pros and cons of our model as discussed in the Conclusions in Section 4.

We first define global consistency as the property that the individual ledgers in each
blockchain in an IBC blockchainset agree on the data, that is, they all hold consistent
information about the access control of the data (the first part of type dlm of the ledgra
output (see Section 2.2)) and where the data resides: the set of nodes that are the second
component of the ledgra output.

Global_consistency Il = (∀ I I’. inbc I Il → inbc I’ Il →
(∀ d. (ledgra (graphI I’) d) = (ledgra (graphI I) d)))

The theorem shows that if global consistency holds, then a step of the state transition does
preserve it.

theorem consistency_preservation:
global_consistency Il =⇒ (Il → Il ’) =⇒ global_consistency Il ’

Preservation of global consistency guarantees that any transaction happening within IBC
preserves one consistent view over all data, their access control, and residence. If initially
data is not visible on all blockchains, not all ledgers are equal. However, if eventually data has
traveled across, all ledgers become the same: the blockchainset becomes like one blockchain:
a “blockchain of blockchains”.

4 Conclusions, related work, and outlook

In this paper, we have provided an abstract formal model of the Inter-blockchain protocol
(IBC) [24] as an instantiation of the Isabelle Infrastructure framework. We have detailed the
formal presentation in Isabelle and the extensions to the Isabelle Infrastructure framework,

FMBC 2020

11:10 IBC in Isabelle

most notably by defining sets of (heterogeneous) blockchains including protocols and a
distinguished relayer. The abstraction we conceived for this model has been first validated
by a proof of concept by sketching how the abstract notion of Consensus can be instantiated
by a locale (Section 2.5). Furthermore, we have defined a global consistency property over
blockchainsets proving that our abstraction yields the desired expressivity (Section 3). We
have proved a preservation theorem for global consistency in Isabelle. Summarizing, our
model allows to prove meta-theoretical results but is not too abstract to allow instantiation
onto concrete blockchains and their Consensus algorithms. As a more general thought, the
dealings with global consistency seem to suggest that IBC creates a blockchain of blockchains.

4.1 Related Work
Relevant examples for the investigation of formal support for blockchains and smart contracts
can be found in abundance in the proceedings of the first FMBC workshop [2]. We only
discuss the few most closely related ones from there since others are either focusing on specific
blockchains (unlike the generic IBC we consider) or are differing in the formal approach (not
using theorem provers and thus not addressing the same level of expressivity and assurance).

A range of works formalizes smart contracts typical for the Ethereum virtual machine.
For example, using the K framework [23], the Lem language [7], and F* [6]. We focus here on
the work that has been performed in the K-framework [23]. The K-framework is a semantics
framework enabling to produce executable operational semantics for programming languages.
K also provides tools like parsers, interpreters, model-checkers and program verifiers. It
has been applied to provide a verification environment for the Ethereum Virtual Machine
EVM [20] which is useful for verifying programme modules within Ethereum’s smart contract
systems, for example, Ethereum’s Name Service (ENS) [25].

In comparison to those dedicated verification environments for specific blockchains, like
Ethereum, our formal model strongly abstracts from technical detail. This abstraction is
necessary to accommodate a global view that allows to reason about the communication
between a heterogeneous set of blockchains.

A few works use model checkers and SMT solvers, for example [4]. Deductive verification
platforms like Why3 [11,13] have been also used for smart contracts. Interactive proof
assistants (e.g. Isabelle/HOL or Coq) have been used before for modeling and proving
properties about Ethereum and Tezos smart contracts [1].

Very related is the work by Nielsen and Spitters on Smart Contract Interactions in
Coq [18]. The authors construct a model of smart contracts that allows for inter-contract
communication generalizing over depth-first execution blockchains like Ethereum and breadth-
first execution blockchains like Tezos. They use Coq’s functional language Galina to express
smart contracts. Besides the obvious difference of being a Coq development rather than an
Isabelle development, we address the high level protocol language IBC instead of focusing on
generalized smart contracts.

Maybe even more closely related is the work on the specification of the dedicated security
framework Cap9 in Isabelle [16]. Compared to us it focuses again on the expression of smart
contracts and does not have the inter-blockchain aspect like our IBC.

4.2 Outlook
The global consistency preservation theorem proves the concept of the IBC specification
and also shows that the formalization in itself is a useful experiment: extracting a closed
abstract model of the IBC from the technical specification [24] has immediately produced

F. Kammüller and U. Nestmann 11:11

the consistency question. The abstraction allowed to define semantics in which a strong
global consistency theorem could be proved within Isabelle in reasonably short time. It
should be understood that these are first steps that mainly serve to prove the concept
of using the Isabelle Infrastructure framework for advancing the IBC. A clear next step
is to elaborate the sketched application example of Section 2.5 of a concrete blockchain
and its consensus algorithm. A much more challenging next step is to refine the model
by elaborating a more concrete IBC protocol example by instantiation of the ibc_prot
component of the blockchainset type. This would be a fruitful future avenue for applied
research in collaboration with the designers of IBC.

The notions of attack trees and security refinement have not been applied in this ap-
plication of the Isabelle Infrastructure framework but can be seen in other applications, for
example to auction protocols [13], GDPR [8], or IoT security [10]. Nevertheless, the current
application has brought about much improvement on the formalization of the ledger datatype
as well as instantiating the generic state of the framework to sets of infrastructures and
defining their state transition.

The Isabelle Infrastructure framework subsumes the earlier Isabelle Insider framework,
for example [13]. Thus there is the possibility to reason about malicious agents that are in
the group of trusted participants. This could be used to reason about participants that do
not comply to the IBC protocol and in terms of Consensus it would enable reasoning on
Byzantine fault tolerance. Using attack tree analysis and security refinement in a security
engineering cycle [15] could then be used to develop secure IBC solutions.

References
1 S. Amani, M. Bégel, M. Bortin, and M. Staples. Towards verifying ethereum smart contract

bytecode in isabelle/hol. In Proceedings of the 7th ACM SIGPLAN International Conference
on Certified Programs and Proofs, pages 66–77. ACM, 2018.

2 N. Catano, D. Marmsoler, and B. Bernardo, editors. Pre-proceedings of the First Workshop on
Formal Methods for Blockchains, FMBC, 2019. Selected papers to appear in Springer LNCS.
URL: https://sites.google.com/view/fmbc.

3 CHIST-ERA. Success: Secure accessibility for the internet of things, 2016.
http://www.chistera.eu/projects/success.

4 Sylvain Conchon, Alexandrina Korneva1, and Fatiha Zaidi. Verifying smart contracts with
cubicle, 2019. Selected papers to appear in Springer LNCS. URL: https://sites.google.
com/view/fmbc.

5 Cosmos. Cosmos hub, 2020. accessed 23.1.2020. URL: https://hub.cosmos.network/master/
hub-overview/overview.html.

6 I. Grishchenko, M. Maffei, and C. Schneidewind. A semantic framework for the security
analysis of ethereum smart contracts. In L. Bauer and R. Ksters, editors, Principles of Security
and Trust, Lecture Notes in Computer Science, pages 243–269. Springer, 2017.

7 Y. Hirai. Defining the ethereum virtual machine for interactive theorem provers. In M. Brenner,
K. Rohloff, J. Bonneau, A. Miller, P. Y. Ryan, V. Teague, A. Braccialiand M. Sala, F. Pintore,
and M. Jakobsson, editors, Financial Cryptography and Data Security, Lecture Notes in
Computer Science, pages 520–535. Springer, 2017.

8 F. Kammüller. Formal modeling and analysis of data protection for gdpr compliance of iot
healthcare systems. In IEEE Systems, Man and Cybernetics, SMC2018. IEEE, 2018.

9 F. Kammüller. Attack trees in isabelle extended with probabilities for quantum cryptography.
Computer & Security, 87, 2019. URL: //doi.org/10.1016/j.cose.2019.101572.

10 F. Kammüller. Combining secure system design with risk assessment for iot healthcare systems.
In Workshop on Security, Privacy, and Trust in the IoT, SPTIoT’19, colocated with IEEE
PerCom. IEEE, 2019.

FMBC 2020

https://sites.google.com/view/fmbc
https://sites.google.com/view/fmbc
https://sites.google.com/view/fmbc
https://hub.cosmos.network/master/hub-overview/overview.html
https://hub.cosmos.network/master/hub-overview/overview.html
//doi.org/10.1016/j.cose.2019.101572

11:12 IBC in Isabelle

11 F. Kammüller. Qkd in isabelle – bayesian calculation. arXiv, cs.CR, 2019. URL: https:
//arxiv.org/abs/1905.00325.

12 F. Kammüller. Isabelle infrastructure framework for ibc, 2020. Isabelle sources for IBC
formalisation. URL: https://github.com/flokam/IsabelleSC.

13 F. Kammüller, M. Kerber, and C.W. Probst. Towards formal analysis of insider threats for
auctions. In 8th ACM CCS International Workshop on Managing Insider Security Threats,
MIST’16. ACM, 2016.

14 F. Kammüller, M. Wenzel, and L. C. Paulson. Locales – a sectioning concept for Isabelle.
In Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin, and L. Thery, editors, Theorem Proving
in Higher Order Logics, 12th International Conference, TPHOLs’99, volume 1690 of LNCS.
Springer, 1999.

15 Florian Kammüller. A formal development cycle for security engineering in isabelle, 2020.
arXiv:2001.08983.

16 Mikhail Mandrykin1, Jake O’Shannessy, Jacob Payne, and Ilya Shchepetkov. Formal specifica-
tion of a security framework for smart contracts, 2019. Selected papers to appear in Springer
LNCS. URL: https://sites.google.com/view/fmbc.

17 A. C. Myers and B. Liskov. Complete, safe information flow with decentralized labels. In
Proceedings of the IEEE Symposium on Security and Privacy. IEEE, 1999.

18 J. Botsch Nielsen and B. Spitters. Smart contract interactions in coq, 2019. Selected papers
to appear in Springer LNCS. URL: https://sites.google.com/view/fmbc.

19 T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL – A Proof Assistant for Higher-Order
Logic, volume 2283 of LNCS. Springer-Verlag, 2002.

20 Daejun Park, Yi Zhang, Manasvi Saxena, Philip Daian, and Grigore Roundefinedu. A formal
verification tool for ethereum vm bytecode. In Proceedings of the 2018 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/FSE 2018, pages 912–915, New York, NY, USA, 2018. Association for
Computing Machinery. doi:10.1145/3236024.3264591.

21 Lawrence Paulson and Jasmin Blanchette. Three years of experience with sledgehammer,
a practical link between automatic and interactive theorem provers. Proceedings of the 8th
International Workshop on the Implementation of Logics, February 2015. doi:10.29007/tnfd.

22 Lawrence C. Paulson. The inductive approach to verifying cryptographic protocols. Journal of
Computer Security, 6(1-2):85–128, 1998. URL: http://iospress.metapress.com/content/
5wlu8p2am1du051d/.

23 Grigore Rosu. Specifying languages and verifying programs with k. 2013 15th International
Symposium on Symbolic and Numeric Algorithms for Scientific Computing, pages 28–31, 2013.

24 The IBC Specification Team. The interblockchain communication protocol, 2020. 4th May
2020 — 1.0.0-rc5. URL: https://github.com/cosmos/ics/blob/master/spec.pdf.

25 Duy Minh Vo. Verification of Smart Contracts using the K-framework. PhD thesis, Technische
Universität Berlin, 2018.

https://arxiv.org/abs/1905.00325
https://arxiv.org/abs/1905.00325
https://github.com/flokam/IsabelleSC
http://arxiv.org/abs/2001.08983
https://sites.google.com/view/fmbc
https://sites.google.com/view/fmbc
https://doi.org/10.1145/3236024.3264591
https://doi.org/10.29007/tnfd
http://iospress.metapress.com/content/5wlu8p2am1du051d/
http://iospress.metapress.com/content/5wlu8p2am1du051d/
https://github.com/cosmos/ics/blob/master/spec.pdf

	Introduction
	Inter-blockchain protocols (IBC)
	Isabelle Infrastructure framework

	IBC in Isabelle
	Overview
	Ledgers
	Infrastructures as blockchains
	Relayer and set of blockchains
	Consensus
	IBC state transition semantics

	Global consistency
	Conclusions, related work, and outlook
	Related Work
	Outlook

