
S. Fröschle, F.D. Valencia (Eds.): Workshop on
Expressiveness in Concurrency 2010 (EXPRESS’10).
EPTCS 41, 2010, pp. 136–150, doi:10.4204/EPTCS.41.10

c© K. Peters, U. Nestmann
This work is licensed under the
Creative Commons Attribution License.

Breaking Symmetries

Kirstin Peters
Technische Universität Berlin, Germany
kirstin.peters@tu-berlin.de

Uwe Nestmann
Technische Universität Berlin, Germany

uwe.nestmann@tu-berlin.de

A well-known result by Palamidessi tells us that πmix (the π-calculus with mixed choice) is more
expressive than πsep (its subset with only separate choice). The proof of this result argues with their
different expressive power concerning leader election in symmetric networks. Later on, Gorla of-
fered an arguably simpler proof that, instead of leader election in symmetric networks, employed the
reducibility of “incestual” processes (mixed choices that include both enabled senders and receivers
for the same channel) when running two copies in parallel. In both proofs, the role of breaking (ini-
tial) symmetries is more or less apparent. In this paper, we shed more light on this role by re-proving
the above result—based on a proper formalization of what it means to break symmetries—without
referring to another layer of the distinguishing problem domain of leader election.

Both Palamidessi and Gorla rephrased their results by stating that there is no uniform and reason-
able encoding from πmix into πsep. We indicate how the respective proofs can be adapted and exhibit
the consequences of varying notions of uniformity and reasonableness. In each case, the ability to
break initial symmetries turns out to be essential.

1 Introduction

Palamidessi’s well-known result [Pal03] tells us that πmix (the π-calculus with mixed choice) is more
expressive than πsep (its subset with only separate choice). More technically, the result states that there
exists no “good”—i.e., uniform (structure-preserving) and reasonable (semantics-preserving)—encoding
from πmix into πsep. Nestmann [Nes00] proved that there is a ”good” encoding from πsep to πa (the
choice-free asynchronous subset of the π-calculus). He also exhibited various encodings from πmix to
πsep, which were not considered “good” by Palamidessi, as they were not uniform or reasonable enough.

Palamidessi’s proof [Pal03] argues with the different expressive power of the involved calculi con-
cerning leader election in symmetric networks. More precisely, Palamidessi proves that there is no sym-
metric network in πsep that solves leader election, whereas there are such networks in πmix. The proof
implicitly uses the fact that it is not possible in πsep to break initial symmetries, while this is possible in
πmix. To this end, a rather strong notion of symmetry consisting of a syntactic and a semantic component
is used to ensure that solving leader election requires breaking initial symmetries. With this result, in-
spired by Bougé’s work [Bou88] in the context of CSP, Palamidessi proves that there is no uniform and
reasonable encoding from πmix into πsep.

Later on, Gorla [Gor08b] offered an arguably simpler proof for the non-existence of a “good” encod-
ing from πmix into πsep. Instead of leader election in symmetric networks, it employed the reducibility of
“incestual” processes (mixed choices that include both enabled senders and receivers for the same chan-
nel) when running two copies in parallel. Gorla’s proof does not explicitly use a notion of symmetry.

Palamidessi’s proof that there are no symmetric networks in πsep that solve leader election addresses
the absolute expressive power of πsep, whereas the proofs of the non-existence of a uniform encoding
by Palamidessi and Gorla address the often-called relative expressive power of the languages [Par08].
In the following, we discuss these two approaches in more detail, as this allows us to clarify the role of
symmetry-breaking in the respective proofs.

http://dx.doi.org/10.4204/EPTCS.41.10
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

K. Peters, U. Nestmann 137

The absolute expressive power of a language describes what kind of behaviour or operations on be-
haviour are expressible in it (see [Par08, Gor08a, Gor08b]). Analysing the absolute expressive power
of a language usually consists of analysing which “problems” can be solved in it and which can not.
It is often difficult to identify a suitable problem instance or problem domain to properly measure the
expressive power of a language. For instance, one might consider Turing-completeness to measure the
computational power of a language. In fact, Turing-completeness has been used in the context of process
algebras, e.g., for Linda [BGZ00]. Instead, Palamidessi, inspired by Bougé [Bou88], uses the distributed
coordination problem of leader election. More precisely, the problem refers to initially symmetric net-
works, where all potential leaders have equal chances and all processes run the same—read: symmet-
ric—code. There, to solve the leader election problem, it is required that in all possible executions a
leader is elected. Usually, it is argued that it is necessary—again in all possible executions—to break
the initial symmetry in order to do so. On the other hand, if there is just a single execution in which the
symmetry is somehow perpetually maintained or at least restored, then also leader election may fail, and
thus the leader election problem is not solved. One may conclude that, at a closer look, Palamidessi’s
proof implicitly addresses another problem: the problem of breaking initial symmetries. Therefore, we
suggest to promote “breaking symmetries” from a mere auxiliary proof technique to a proper problem of
its own. It turns out that, by doing so, we can significantly weaken the definition of symmetry and at the
same time provide a stronger proof applicable to problem instances different from leader election.

Now, to compare the absolute expressive power of two languages, we may simply choose a problem
that can be solved in one language, but not in the other language. Actually, as soon as we compare
two languages, it makes sense to use the term relative expressive power, as we can now relate the two
languages. Unfortunately, the terminology was introduced differently. It has been attributed (see [Par08])
to the comparison of the expressive power of two languages by means of the existence or non-existence
of encodings from one language into the other language, subject to various conditions on the encoding.1
Both Palamidessi and Gorla state results of this kind; they prove that there is no uniform and reasonable
encoding from πmix into πsep, for varying interpretations of the conditions uniform and reasonable.

In this paper, we show that the problem of breaking initial symmetries, compared to the problem of
leader election, appears to be a more suitable problem instance to separate πmix from πsep. There are two
great benefits in proving an absolute separation result instead of a translational one. First, in opposite to
translational separation results which are always equipped with the conditions on the encoding, we can
formulate a separation result without any pre- or side conditions. Second, as we show in Section 5, we
can prove several translational separation results due to different definitions of reasonableness as simple
consequences of our absolute separation result. For our work, we had to develop answers to two related
questions of definition:

• How exactly should one define symmetric networks?

• What exactly does it mean to break symmetries?

The main contributions of this paper are then as follows. (1) We present a separation result between πmix
and πsep that does not require any additional preconditions. In particular, it is completely independent
of what it means for an encoding to be ”good” or ”reasonable”. (2) Since we use a weaker notion of
symmetry, and because we do not focus on the leader election problem, our separation result is more

138 Breaking Symmetries

general than the one in [Pal03], i.e., it widens the gap between πmix and πsep. It also allows us to derive a
number of translational separation results using counterexamples different from leader election. (3) We
prove a stronger translational separation result in comparison to [Pal03, VPP07] and (the first setting of)
[Gor08b] by weakening the conditions on the encodings used.

Overview of the Paper. In §2, we introduce the two process calculi that we intend to compare. In
§3, we revisit the notion of symmetry used by Palamidessi to propose her separation result and define
symmetry as we use it. In §4, we prove the separation result, i.e., we prove that πmix is strictly more
expressive as πsep, by proving the inability of πsep to break initial symmetries. Based on this result,
we prove in §5 that there is no uniform and reasonable encoding from πmix to πsep examining different
notions of reasonableness. We conclude with §6.

2 Technical Preliminaries

In the following, let N denote a countable set of names. As is common nowadays, we present the
π-calculus including mixed guarded choice, but without match or mismatch operator [SW01, Pal03].

Definition 2.1 (π-calculus). The processes of the π-calculus, denoted by Pmix, are given by

P ::= ∑
i
αi.Pi | P | P | (νz) P | !P , where

α ::=

K. Peters, U. Nestmann 139

in P and µ. Their definitions are completely standard. We assume that there are no clashes between free
and bound names in terms, i.e., in any term the set of bound and free names are disjoint.

The operational semantics of Pmix and Psep are jointly given by the transition rules in Figure 1,
where congruence ≡ is defined (according to [Pal03]) by the following rules:

1. P ≡ Q if Q can be obtained from P by alpha-conversion

2. (νx)P | Q ≡ (νx) (P | Q) if x /∈ fn(Q)

3. P | Q ≡ Q | P

140 Breaking Symmetries

Hn−1
µn−→ P′ for some P′,H1, . . . ,Hn−1 ∈P with the sequence µ1, . . . ,µn of observable and unobservable

actions, i.e., µ1, . . . ,µn ∈ L . Accordingly P µ̃−→ P′ 6−→ denotes a finite execution from P to P′ with the
sequence of actions µ̃ ∈ T (L).

3 Semantic versus Syntactic Symmetry

Palamidessi in [Pal03] proved that πmix is strictly more expressive than πsep by proving that the former
can solve leader election in symmetric networks while the latter can not. The leader election problem
consists of choosing a leader among the processes of a network. In [Pal03], a special channel out is
assumed to propagate the index of the winning process, i.e., the leader. The leader election problem is
solved by a network iff in each of its executions each process propagates the same process index over
out and no other index is propagated.

As already Bougé did for CSP in [Bou88], Palamidessi uses a semantic definition of symmetry.
Intuitively, the syntactic component of the symmetry definition in [Bou88, Pal03, VPP07] states two pro-
cesses as symmetric iff they are identical modulo some renaming according to a permutation σ on their
free names. Bougé [Bou88] argues why a syntactic notion of symmetry does not suffice considering the
leader election problem to distinguish CSPi/o, i.e., CSP where input and output commands may appear
in guards, and CSPin, i.e., CSP where only input commands may appear in guards. He presents two
networks in CSPin each solving leader election although each should be considered as syntactically sym-
metric. The following example presents such a syntactically symmetric network solving leader election
in πsep:

N , P | σ (P) with P =

K. Peters, U. Nestmann 141

with N = { 1, . . . ,k }, X = fn(P1 | . . . | Pk) \{ out }, and for each x ∈ X , t(x) = { n | x ∈ fn(Pn) }. Given
a network P and the hypergraph H(P) associated to P an automorphism on P is any automorphismσ = 〈σN ,σX〉 on H(P) such that σX coincides with σN on N ∩X and σX preserves the distinction be-
tween free and bound names.

A network P with the associated hypergraph H(P) = 〈N,X , t〉 and an automorphism σ on P is sym-
metric with respect to σ iff for each node i ∈ N, Pσ(i) ≡α σ (Pi)

2, holds where ≡α denotes equality
modulo alpha conversion.

To distinguish πmix and πsep Palamidessi shows that a network P ∈ Psep which is symmetric with
respect to an automorphism σ on P with only one orbit can not solve the leader election problem while
this is possible in πmix.

The main point of the semantic component of symmetry is that the special channel out can not be
renamed by σ while the indices of the processes of the network must be permuted by σ . With that,
the network N in (1) above is not symmetric according to [Pal03]. This allows Palamidessi to prove
that for each execution of a network in Psep, which is symmetric with respect to an automorphism σ ,
whenever there is an output

142 Breaking Symmetries

process P∈P , a sequence x̃ containing only free names of P, a network size n ∈N, a symmetry relationσ of degree n over N \bn(P).
The main difference of our definition to the definition of a symmetric network in [Pal03] is that, in

[Pal03], the processes of a symmetric network are numbered consecutively and for each process Pi within
the symmetric network Pσ(i) ≡ σ (Pi) holds. Thus, each symmetric network in [Pal03] is a symmetric
network for our definition, but not vice versa. Our definition of symmetry is weaker.

We use an index-guided form of substitution to replace single processes within a symmetric network.

Definition 3.3 (Indexed substitution). Let
[
P
]n,x̃
σ be a symmetric network. An indexed substitution

of some processes within a symmetric network, denoted by { i1 7→ Q1, . . . , im 7→ Qm }
[
P
]n,x̃
σ for some

processes Q1, . . . ,Qm ∈P and i1, . . . , im ∈ { 0, . . . ,n−1 } such that for all j,k ∈ { 1, . . . ,m } j 6= k implies
i j 6= ik, is the result of exchanging σ ik (P) in

[
P
]n,x̃
σ by Qk for all k ∈ { 1, . . . ,m }. (End of Definition 3.3)

Obviously { i1 7→ Q1, . . . , im 7→ Qm }
[
P
]n,x̃
σ is a network; in general, however, it is not symmetric with

respect to σ .

4 Symmetric Executions

We explicitly prove that inπsep it is not possible to break initial symmetries, i.e., starting with a symmetric
network there is always at least one execution preserving the symmetry. We refer to such an execution
as symmetric execution. Let us consider a symmetric network

[
P
]n,x̃
σ of degree n. Of course, if only

one process does a step on its own, then all the other processes of the network can mimic this step
and thus restore symmetry. So, there is a symmetry preserving execution if there is no communication
between the processes of the network. The most interesting case is how the symmetry is restored after
a communication between two processes of the network has temporarily destroyed it. Both cases are
reflected in the proof of Theorem 4.4.

Apart from symmetric networks, we use the notion of a symmetric sequence of actions. Similarly to
symmetric networks, in which a symmetry relation is applied to processes to derive symmetric processes,
a symmetric sequence of actions is the result of applying a symmetry relation to action labels. It is
sometimes necessary to translate a bound output to an according unbound output because a network can
send a bound name several times but only the first of this outputs will be bound.

Definition 4.1 (Symmetric sequence of actions). Let µ ∈ L be an action label, let x̃ ∈ T (N) be
a sequence of names and σ a symmetry relation of degree n ∈ N. Then [µ]n,x̃σ denotes the sequenceµ1, . . . ,µn of n labels such that µ1, . . . ,µn ∈ L , µ1 = µ and for i ∈ { 2, . . . ,n }:

µi =

τ, if µ = τ
σ i (a)b, if µ = ab

K. Peters, U. Nestmann 143

Definition 4.2 (Symmetric execution). A symmetric execution is either a finite execution of length
m ·n ∈ N

[
P
]n,x̃
σ

[µ1]n,x̃σ1−−−→
[
P1
]n,x̃1σ1

[µ2]n,x̃1σ2−−−−→ . . .
[µm]

n,x̃m−1σm−−−−−→
[
Pm

]n,x̃mσm
6−→

for some P1, . . . ,Pm ∈ P , µ1, . . . ,µm ∈ L , x̃1, . . . , x̃m ∈ T (N) and σ1, . . . ,σm ∈ Sym(n,N) such thatσ ⊆ σ1 ⊆ . . .⊆ σm or an infinite execution

[
P
]n,x̃
σ

[µ1]n,x̃σ1−−−→
[
P1
]n,x̃1σ1

[µ2]n,x̃1σ2−−−−→
[
P2
]n,x̃2σ2

[µ3]n,x̃2σ3−−−−→

for some P1,P2, . . . ∈ P , µ1,µ2, . . . ∈ L , x̃1, x̃2, . . . ∈ T (N) and σ1,σ2, . . . ∈ Sym(n,N) such thatσ ⊆ σ1 ⊆ σ2 ⊆ (End of Definition 4.2)

Note that because of σ ⊆ σ1 ⊆ . . . the symmetry relation can only increase during a symmetric execution
such that existing symmetries are preserved. Moreover—as shown in Lemma 4.5—the symmetry relation
does only grow in the presence of bound output to capture the renaming done by alpha-conversion. In
the absence of bound output we have σ = σ1 = . . .= σm and σ = σ1 = σ2 = . . . respectively.

Palamidessi proved that πsep enjoys a certain kind of confluence property [Pal03]. Let

144 Breaking Symmetries

Proof outline of Lemma 4.5.
[
P
]n,x̃
σ

µ−→ P̂ can be the result of either an internal µ-step of one process of
the network or of a communication between two processes of the network. In the first case, only one
process performs a step and the rest of the network remains equal, i.e.:

∃i ∈ { 0, . . . ,n−1 } . ∃H ∈ Psep . ∃x̃1 ∈ T (N) . σ i (P) µ−→ H and P̂ ≡ { i 7→ H }
[
P
]n,x̃1σ

In this case, we can simply mimic the step of the first process by performing the action according to the
j+1’th label in [µ]n,x̃σ ′ by process σ i+ j (P) for each j ∈ { 1, . . . ,n−1 }. By symmetry, each process can
perform this step and each step results in a process symmetric to the one produced by the first step such
that the n steps lead to a symmetric network again. Difficulties arise only in the case that µ is a bound
output. Otherwise, we can choose x̃′ = x̃ and σ ′ = σ . If µ is a bound output of a name bound in the
whole network, we have to reduce x̃ by all names sent by bound outputs in [µ]n,x̃σ to obtain x̃′. Note that
some outputs in [µ]n,x̃σ may be unbound. In this case, we can choose σ ′ = σ again. Otherwise, if µ is a
bound output of a name bound in a process of the network then, by symmetry, this name is bound in any
other process of the network, too. So performing the first step requires alpha-conversion to avoid name
capture. To keep track of the names changed by alpha-conversion we have to update σ in this case such
that σ ′ is the union of σ and a permutation on the bound names due to the performed alpha-conversion.
In this case, x̃′ = x̃.

In the second case, µ = τ and two processes of the network change, i.e.:

∃i, j ∈ { 0, . . . ,n−1 } . ∃H1,H2 ∈ Psep . ∃z,z′ ∈ N . i 6= j and
(σ i (P) | σ j (P) τ−→ H1 | H2

or σ i (P) | σ j (P) τ−→ (νz,z′) (H1 | H2)
)
and P̂ ≡ { i 7→ H1, j 7→ H2 }

[
P
]n,x̃′
σ ′

This case is a little bit more difficult, but again with the help of the confluence lemma and the symmetry
of the network, we can show that there exists n−1 steps mimicking the first communication step such
that each process is exactly once a sender and once a receiver. Symmetry ensures that each process can
perform a sending and a receiving action symmetric to the actions performed in the first step. By the
confluence lemma, these two steps can be performed by each process consecutively in an arbitrary order,
so each process can first perform the corresponding sending action and afterwards the corresponding
receiving action or the other way around. By symmetry, these n steps result in a symmetric network.
Again, a bound output in the first step leads to some difficulties. Otherwise, we can choose x̃′ = x̃ andσ ′ = σ again. If the first step contains a bound output, then the corresponding name was bound in a
process of the network (not in the whole network) and so, by symmetry, it is bound in each process of
the network. With that again, we have to perform alpha-conversion. Moreover, the name formerly bound
and its renamings due to alpha-conversion are bound in the whole network after the n steps such that we
have to update x̃ and σ according to this alpha-conversion to obtain x̃′ and σ ′.

K. Peters, U. Nestmann 145

Breaking Symmetries. Note that Theorem 4.4 does not state anything about encodability and it does
not need a notion of reasonableness either. Instead, it just states without any precondition that every
symmetric network in Psep has at least one symmetric execution. In contrast, there are symmetric
networks in Pmix without such a symmetric execution, as the following example shows. Consider the
network

(νx,y) (P | σ (P)) with P =

146 Breaking Symmetries

Actually, Theorem 4.4 should suffice to prove that there can not be a uniform and reasonable en-
coding from πmix into πsep, because uniform encodings preserve symmetries and it is possible to break
symmetries in πmix while this is not possible in πsep. The crux is that there is no commonly accepted
notion of reasonableness. For separation results, we seek a definition of reasonableness that is as weak as
possible. But, without any notion of reasonableness, the theorem would not hold, because there are uni-
form encodings from πmix into πsep. For instance, we could simply translate everything to 0. Of course
such an encoding makes no sense and so hardly anyone would call it reasonable. Usually, an encoding is
called reasonable if it preserves some kind of behaviour or the ability to solve some kind of problem so
to ensure that the purpose of the original term is preserved. In the following, we consider three different
notions of reasonableness.

Version 1 For Palamidessi, an encoding is reasonable if it preserves the relevant observables and termi-
nation properties [Pal03]. Implicitly, she requires that a reasonable encoding should at least preserve the
ability to solve leader election. We do alike but with a different interpretation of what it means to solve
leader election that is more closely related to the definition used by Bougé [Bou88]: A network is said
to solve leader election iff in each execution exactly one process propagates itself as leader while all the
other processes propagate themselves as slaves. We assume the existence of two different predetermined
output actions, one to propagate as leader and the other to propagate as slave. Moreover, we require that
for both output actions neither the channel names nor the sent values are bound within the network4. The
main difference to the definition of leader election used in [Pal03] is that here the slaves do not have to
know the identity, i.e., the index, of the leader. So, this definition is usually considered as a weaker notion
of the leader election problem. An encoding is now said to be reasonable iff it preserves the ability to
solve the leader election problem.

Definition 5.2 (1-Reasonableness). An encoding [[·]] : Pmix → Psep is 1-reasonable, if [[P]] solves
leader election if and only if P solves leader election for all P ∈ Pmix. (End of Definition 5.2)

To prove that there is no uniform and reasonable encoding we force our encoding to lead to a network
of two processes that is symmetric with respect to identity. By Theorem 4.4, this network has at least
one symmetric execution. Because we use the identity as symmetry relation, in the symmetric execution
both processes behave exactly the same such that if one of them propagates himself as leader then the
other one does alike, which contradicts leader election.

Theorem 5.3 (Separation Result). There is no uniform and 1-reasonable encoding from πmix into πsep.
Proof of Theorem 5.3. Let us assume the contrary, i.e., there is a uniform and 1-reasonable encoding [[·]]
from πmix into πsep. Consider the network:

N , P | P with P , a.

K. Peters, U. Nestmann 147

output action. Let µl denote this send action. By Definition 4.2, a symmetric execution has symmetric
sequences of actions, i.e., the action µl is coupled to its symmetric counterpart building the sequence
[µl]

2,z̃′σ ′ for some z̃′ ∈ T (N) and σ ′ ∈ Sym(2,N). By construction in the proof of Lemma 4.5, and
because we start with id, we know that σ ′ consists of (permutations of) names that are bound in [[N]] or
fresh. Because, by definition, µl can neither contain fresh nor bound names, we conclude [µl]

2,z̃′σ ′ = µl ,µl ,
i.e., the output action appears twice in the symmetric execution. With that two processes propagate
themselves as leader, which is a contradiction.

148 Breaking Symmetries

Gorla [Gor08b] defines the reasonableness of an encoding by the properties operational correspon-
dence, divergence reflection and success sensitiveness. We use just the last of his properties instantiated
with must testing. So we implicitly require divergence reflection. According to [Gor08b], success is
represented by a process √ that is part of the source and the target language of the encoding and always
appears unbound. More precisely, a process must-succeeds if it always reduces to a process containing
a top-level unguarded occurrence of √. The fact that P must-succeeds is denoted by P �. With it, an
encoding is reasonable if the encoding of a term must-succeeds iff the term itself must-succeeds.
Definition 5.5 (2-Reasonableness). An encoding [[·]] : Pmix → Psep is 2-reasonable, if P � iff [[P]]�
for all P ∈ Pmix. (End of Definition 5.5)

Again, we choose a term such that the encoding results in a network of the form Q | Q in Psep that
is symmetric with respect to identity. In this case, we take advantage of the fact that the minimal degree
of id is less than the degree of the network such that we can use Lemma 5.4 to subdivide the symmetric
execution. With it already Q can perform the same sequence of steps as each process in Q | Q performs
in the symmetric execution.
Theorem 5.6 (Separation Result). There is no uniform and 2-reasonable encoding from πmix into πsep.
Proof of Theorem 5.6. Let us assume the contrary, i.e., there is a uniform and 2-reasonable encoding [[·]]
from πmix into πsep. Consider the network:

N , P | P with P , a.0+

K. Peters, U. Nestmann 149

Definition 5.7 (3-Reasonableness). An encoding [[·]] :Pmix → Psep is 3-reasonable if P −→ if and only
if [[P]]−→ for all P ∈ Pmix. (End of Definition 5.7)

As far as we know, only few intuitively reasonable encodings are not also 3-reasonable.
Again, for the separation proof, we enforce that the encoding results in a symmetric network Q | Q.

By subdividing the symmetric execution of this network, we prove that Q −→ iff Q |Q −→, which does not
necessarily hold in πmix.

Theorem 5.8 (Separation Result). There is no uniform and 3-reasonable encoding from πmix into πsep.
Proof of Theorem 5.8. Let us assume the contrary, i.e., there is a uniform and 3-reasonable encoding [[·]]
from πmix into πsep. Consider the network:

N , P | P with P , a+

150 Breaking Symmetries

with the existence of a symmetric execution. In two proofs, we then apply Lemma 5.4 to subdivide this
symmetric execution. At last, we derive a contradiction between the additional information provided by
the symmetric execution (and its subdivision) and the respective definition of reasonableness.

Note that we prove the absolute result without any precondition. We use different definitions of
reasonableness for the translational results. The only constant precondition of the translational separation
results is the definition of uniformity, i.e., the homomorphic translation of the parallel operator. This
condition is crucial. Without it, we could not apply our absolute separation result. To the best of our
knowledge, only Gorla ever managed to prove such a separation result between πmix and πsep without the
homomorphic translation of the parallel operator, using compositionality, operational correspondence,
divergence reflection, success sensitiveness and either a reduction sensitive version of ≍ or the stronger
version of operational correspondence of his third setting. However, Gorla believes that the result also
holds for the general formulation of his criteria, i.e., without assuming a reduction sensitive version of
≍ or the stronger version of operational correspondence of his third setting. We believe that this is an
interesting open question.

We may also turn the non-existence of a uniform and reasonable encoding around and rephrase it
as a weakened existence statement. Recall that any uniform encoding from πmix into πsep preserves
symmetries. While it is possible to break such symmetries in πmix, this is not possible in πsep. Thus,
should there be a non-uniform (at least: “weakly compositional”) but reasonable encoding from πmix intoπsep, then it would have to be the encoding itself to break these symmetries. Finding such a reasonable
encoding is an open problem, if reasonableness includes divergence reflection. A uniform and “almost
reasonable” divergent encoding was already presented in [Nes00].

References
[BGZ00] Nadia Busi, Roberto Gorrieri, and Gianluigi Zavattaro. On the expressiveness of linda coordination

primitives. Information and Compututation, 156(1–2):90–121, 2000.
[Bou88] Luc Bougé. On the Existence of Symmetric Algorithms to Find Leaders in Networks of Communicating

Sequential Processes. Acta Informatica, 25(4):179–201,Mai 1988.
[Gor08a] Daniele Gorla. Comparing Communication Primitives via their Relative Expressive Power. Information

and Computation, 206(8):931–952, 2008.
[Gor08b] Daniele Gorla. Towards a Unified Approach to Encodability and Separation Results for Process Calculi.

Technical report, Dip. di Informatica, Univ. di Roma ”La Sapienza”, 10 2008. To appear in Information
and Computation.

[Nes00] Uwe Nestmann. What is a ”Good” Encoding of Guarded Choice? Information and Computation,
156(1-2):287–319, 2000.

[Pal03] Catuscia Palamidessi. Comparing the Expressive Power of the Synchronous and the Asynchronous
π-calculi. Mathematical Structures in Computer Science, 13(5):685–719, 2003.

[Par08] Joachim Parrow. Expressiveness of Process Algebras. Electronic Notes in Theoretical Computer Sci-
ence, 209:173–186, 2008.

[PN10] Kirstin Peters and Uwe Nestmann. Breaking symmetries. Technical report, Technische Universität
Berlin, Germany, July 2010. http://arxiv.org/corr/home.

[SW01] Davide Sangiorgi and David Walker. The π-calculus: A Theory of Mobile Processes. Cambridge
University Press New York, NY, USA, October 16 2001.

[VPP07] Maria Grazia Vigliotti, Iain Phillips, and Catuscia Palamidessi. Tutorial on separation results in process
calculi via leader election problems. Theoretical Computer Science, 388(1–3):267–289, December 5
2007.

	1 Introduction
	2 Technical Preliminaries
	3 Semantic versus Syntactic Symmetry
	4 Symmetric Executions
	5 Non-Existence of Uniform Encodings
	6 Conclusion and Future Work
	References

