284 research outputs found

    Spatial Encoding Strategy Theory: The Relationship between Spatial Skill and STEM Achievement

    Get PDF
    Learners’ spatial skill is a reliable and significant predictor of achievement in STEM, including computing, education. Spatial skill is also malleable, meaning it can be improved through training. Most cognitive skill training improves performance on only a narrow set of similar tasks, but researchers have found ample evidence that spatial training can broadly improve STEM achievement. We do not yet know the cognitive mechanisms that make spatial skill training broadly transferable when other cognitive training is not, but understanding these mechanisms is important for developing training and instruction that consistently benefits learners, especially those starting with low spatial skill. This paper proposes the spatial encoding strategy (SpES) theory to explain the cognitive mechanisms connecting spatial skill and STEM achievement. To motivate SpES theory, the paper reviews research from STEM education, learning sciences, and psychology. SpES theory provides compelling post hoc explanations for the findings from this literature and aligns with neuroscience models about the functions of brain structures. The paper concludes with a plan for testing the theory’s validity and using it to inform future research and instruction. The paper focuses on implications for computing education, but the transferability of spatial skill to STEM performance makes the proposed theory relevant to many education communities

    FIRE Arctic Clouds Experiment

    Get PDF
    An overview is given of the First ISCCP Regional Experiment (FIRE) Arctic Clouds Experiment that was conducted in the Arctic during April through July, 1998. The principal goal of the field experiment was to gather the data needed to examine the impact of arctic clouds on the radiation exchange between the surface, atmosphere, and space, and to study how the surface influences the evolution of boundary layer clouds. The observations will be used to evaluate and improve climate model parameterizations of cloud and radiation processes, satellite remote sensing of cloud and surface characteristics, and understanding of cloud-radiation feedbacks in the Arctic. The experiment utilized four research aircraft that flew over surface-based observational sites in the Arctic Ocean and Barrow, Alaska. In this paper we describe the programmatic and science objectives of the project, the experimental design (including research platforms and instrumentation), conditions that were encountered during the field experiment, and some highlights of preliminary observations, modelling, and satellite remote sensing studies

    Emergence of qualia from brain activity or from an interaction of proto-consciousness with the brain: which one is the weirder? Available evidence and a research agenda

    Get PDF
    This contribution to the science of consciousness aims at comparing how two different theories can explain the emergence of different qualia experiences, meta-awareness, meta-cognition, the placebo effect, out-of-body experiences, cognitive therapy and meditation-induced brain changes, etc. The first theory postulates that qualia experiences derive from specific neural patterns, the second one, that qualia experiences derive from the interaction of a proto-consciousness with the brain\u2019s neural activity. From this comparison it will be possible to judge which one seems to better explain the different qualia experiences and to offer a more promising research agenda

    Visual Exploration and Object Recognition by Lattice Deformation

    Get PDF
    Mechanisms of explicit object recognition are often difficult to investigate and require stimuli with controlled features whose expression can be manipulated in a precise quantitative fashion. Here, we developed a novel method (called “Dots”), for generating visual stimuli, which is based on the progressive deformation of a regular lattice of dots, driven by local contour information from images of objects. By applying progressively larger deformation to the lattice, the latter conveys progressively more information about the target object. Stimuli generated with the presented method enable a precise control of object-related information content while preserving low-level image statistics, globally, and affecting them only little, locally. We show that such stimuli are useful for investigating object recognition under a naturalistic setting – free visual exploration – enabling a clear dissociation between object detection and explicit recognition. Using the introduced stimuli, we show that top-down modulation induced by previous exposure to target objects can greatly influence perceptual decisions, lowering perceptual thresholds not only for object recognition but also for object detection (visual hysteresis). Visual hysteresis is target-specific, its expression and magnitude depending on the identity of individual objects. Relying on the particular features of dot stimuli and on eye-tracking measurements, we further demonstrate that top-down processes guide visual exploration, controlling how visual information is integrated by successive fixations. Prior knowledge about objects can guide saccades/fixations to sample locations that are supposed to be highly informative, even when the actual information is missing from those locations in the stimulus. The duration of individual fixations is modulated by the novelty and difficulty of the stimulus, likely reflecting cognitive demand

    Innovation und Trends für Mobiles Lernen

    Full text link
    Der Beitrag zeigt aktuelle Trends im Bereich der mobilen und ubiquitären Lerntechnologien auf, welche die klassischen Konzepte von Mobilem Lernen erweitern: a) Mobiler und allgegenwärtiger Zugang zu Lerninhalten b) unterbrechungsfreie Lernunterstützung oder "Seamless Learning Support", die nahtlose Integration von Lernunterstützung in gemischten Lernszenarien, c) Smartphones und Sensoren im Mobilen Lernen, d) Mobile Gaming und mobile Augmented Reality und e) situierte eingebettete Displays. Anhand dieser Trends werden die Konsequenzen für das didaktische Design und darunter liegende Lernkonzepte diskutiert
    corecore