270 research outputs found

    Habitat connectivity in reef fish communities and marine reserve design in Old Providence-Santa Catalina, Colombia

    Get PDF
    On the insular platform of Old Providence/Santa Catalina, Colombia, we compared nearshore lagoonal patch reefs to those on the northern bank distant from the islands to determine the importance of habitat connectivity to fish community structure. Nearshore patch reefs had greater proximity to mangrove, seagrass and rocky shore habitats, and they had significantly more individuals. Nearshore reefs also tended to have a greater total biomass, more species, a higher proportion of predators of mobile invertebrates and small fishes, and a lower proportion of herbivores. Biomass of snappers and grunts at nearshore sites was four times greater compared to bank sites, and was correlated with the amount of seagrass and sand/rubble habitat within 500 m of each patch reef. We also compared length-frequency distributions and abundances of grunts and snappers among all sites (deep and shallow forereefs, patch reefs and deep and shallow leeside slopes). The results were consistent with ontogenetic migrations from shallow sites, primarily seagrass and mangrove habitats, to deeper sites and to those further out on the bank. The evidence suggests that species differed in both distance and direction of dispersal, which may be affected by the abundance and distribution of preferred habitats. Marine reserves near the islands should target nearshore nursery areas and patch reefs harboring species of limited dispersal capability. Reserves on the northern bank would protect spawners of those species showing the greatest dispersal capability

    Recovery of corals a decade after a bleaching event in Dubai, United Arab Emirates

    Get PDF
    Elevated sea surface temperatures in the late 1990s were associated with widespread coral mortality in the Arabian Gulf, particularly in Acropora dominated areas. This study investigates the composition, condition, and recruitment patterns of coral communities in Saih Al-Shaib, Dubai, United Arab Emirates, a decade after mass bleaching. Five statistically distinct communities were identified by cluster analysis, with grouping optimized from 17 significant indicator species. Overall, 25 species of scleractinian coral were observed, representing 35 ± 1.6% coral cover. Densities of recruits were low (0.8 ± 0.2 m-2), and composition generally reflected that of the surrounding adult community. Ten years after mass mortality, Acropora dominated assemblages were observed in three of the six sites examined and coral cover (41.9 ± 2.5%) was double post-bleaching cover. One shallow near-shore site appears to have had recovery of Acropora reset by a further bleaching event in 2002. However, the prevalence of young Acropora colonies here indicates that recovery may recur in several years. One area formerly dominated by Acropora is now dominated by faviids and poritids, with adult and juvenile composition suggesting this dominance shift is likely to persist. Porites lutea and Porites harrisoni dominated communities were negligibly impacted by the bleaching events, and the limited change in coral cover and composition in intervening years likely results from slow growth and low recruitment. Despite strong recovery of several dominant Acropora species, five formerly common species from this area were not observed suggesting local extinction. Dubai coral communities exhibit both resistance and resilience to elevated sea temperatures. The conservation of these patch reefs is warranted given the predicted increase in bleaching events, and the role that these communities may play in regional recovery. © 2008 Springer-Verlag

    Are artificial reefs surrogates of natural habitats for corals and fish in Dubai, United Arab Emirates?

    Get PDF
    Artificial reefs are often promoted as mitigating human impacts in coastal ecosystems and enhancing fisheries; however, evidence supporting their benefits is equivocal. Such structures must be compared with natural reefs in order to assess their performance, but past comparisons typically examined artificial structures that were too small, or were immature, relative to the natural reefs. We compared coral and fish communities on two large (\u3e400,000 m3) and mature (\u3e25 year) artificial reefs with six natural coral patches. Coral cover was higher on artificial reefs (50%) than in natural habitats (31%), but natural coral patches contained higher species richness (29 vs. 20) and coral diversity (H′ = 2.3 vs. 1.8). Multivariate analyses indicated strong differences between coral communities in natural and artificial habitats. Fish communities were sampled seasonally for 1 year. Multivariate fish communities differed significantly among habitat types in the summer and fall, but converged in the winter and spring. Univariate analysis indicated that species richness and abundance were stable throughout the year on natural coral patches but increased significantly in the summer on artificial reefs compared with the winter and spring, explaining the multivariate changes in community structure. The increased summer abundance on artificial reefs was mainly due to adult immigration. Piscivores were much more abundant in the fall than in the winter or spring on artificial reefs, but had low and stable abundance throughout the year in natural habitats. It is likely that the decreased winter and spring abundance of fish on the artificial reefs resulted from both predation and emigration. These results indicate that large artificial reefs can support diverse and abundant coral and fish communities. However, these communities differ structurally and functionally from those in natural habitats, and they should not be considered as replacements for natural coral and fish communities. © Springer-Verlag 2009

    The influence of wave exposure on coral community development on man-made breakwater reefs, with a comparison to a natural reef

    Full text link
    Breakwaters dominate shorelines in many coastal urban areas, providing substantial hard-bottom habitat upon which diverse and abundant reef communities develop. In recognition of their potential ecological and economic importance, there is increasing interest in understanding how design features can influence community development. We investigated the influence of wave exposure on breakwater coral communities in Dubai, United Arab Emirates. Coral community composition, cover, size structure, recruitment, mortality, and growth rates were compared quarterly between two windward and two leeward breakwater sites for 1 yr to explore the influence of wave exposure on coral community development. Comparisons also were made with a natural coral reef to gain an understanding of how community structure and dynamics compare between these habitats. Benthic and water column sediment particle sizes were also analyzed. Leeward breakwaters contained a low-cover coral community dominated by small colonies with high mortality compared with windward breakwaters and the natural reef. Windward breakwater coral communities had comparable recruitment, mortality, and growth rates as the natural reef. Fine sediments ( 125 μm), likely as a result of differences in wave action among reef types. Overall, these results suggest that leeward breakwaters represent sub-optimal habitats for coral community development. However, with appropriate design, breakwaters can develop diverse and abundant coral communities with comparable coral cover, demographics, and growth rates to those on the natural reef in Dubai. © 2010 Rosenstiel School of Marine and Atmospheric Science of the University of Miami

    Quantitative Relationships Between Pore Tortuosity, Pore Topology, and Solid Particle Morphology Using a Novel Discrete Particle Size Algorithm

    Get PDF
    To sustain the continuous high-rate charge current required for fast charging of electric vehicle batteries, the ionic effective diffusion coefficient of the electrodes must be high enough to avoid the electrode being transport limited. Tortuosity factor and porosity are the two microstructure parameters that control this effective diffusion coefficient. While different methods exist to experimentally measure or calculate the tortuosity factor, no generic relationship between tortuosity and microstructure presently exists that is applicable across a large variety of electrode microstructures and porosities. Indeed, most relationships are microstructure specific. In this work, generic relationships are established using only geometrically defined metrics that can thus be used to design thick electrodes suitable for fast charging. To achieve this objective, an original, discrete particle-size algorithm is introduced and used to identify and segment particles across a set of 19 various electrode microstructures (nickel-manganese-cobalt [NMC] and graphite) obtained from X-ray computed tomography (CT) to quantify parameters such as porosity, particle elongation, sinuosity, and constriction, which influence the effective diffusion coefficient. Compared to the widely used watershed method, the new algorithm shows less over-segmentation. Particle size obtained with different numerical methods is also compared. Lastly, microstructure-tortuosity relationship and particle size and morphology analysis methods are reviewed

    New pixelized Micromegas detector with low discharge rate for the COMPASS experiment

    Full text link
    New Micromegas (Micro-mesh gaseous detectors) are being developed in view of the future physics projects planned by the COMPASS collaboration at CERN. Several major upgrades compared to present detectors are being studied: detectors standing five times higher luminosity with hadron beams, detection of beam particles (flux up to a few hundred of kHz/mm^{2}, 10 times larger than for the present Micromegas detectors) with pixelized read-out in the central part, light and integrated electronics, and improved robustness. Two solutions of reduction of discharge impact have been studied, with Micromegas detectors using resistive layers and using an additional GEM foil. Performance of such detectors has also been measured. A large size prototypes with nominal active area and pixelized read-out has been produced and installed at COMPASS in 2010. In 2011 prototypes featuring an additional GEM foil, as well as an resistive prototype, are installed at COMPASS and preliminary results from those detectors presented very good performance. We present here the project and report on its status, in particular the performance of large size prototypes with an additional GEM foil.Comment: 11 pages, 5 figures, proceedings to the Micro-Pattern Gaseous Detectors conference (MPGD2011), 29-31 August 2011, Kobe, Japa

    Habitat filtering determines spatial variation of macroinvertebrate community traits in northern headwater streams

    Get PDF
    Although our knowledge of the spatial distribution of stream organisms has been increasing rapidly in the last decades, there is still little consensus about trait-based variability of macroinvertebrate communities within and between catchments in near-pristine systems. Our aim was to examine the taxonomic and trait based stability vs. variability of stream macroinvertebrates in three high-latitude catchments in Finland. The collected taxa were assigned to unique trait combinations (UTCs) using biological traits. We found that only a single or a highly limited number of taxa formed a single UTC, suggesting a low degree of redundancy. Our analyses revealed significant differences in the environmental conditions of the streams among the three catchments. Linear models, rarefaction curves and beta-diversity measures showed that the catchments differed in both alpha and beta diversity. Taxon- and trait-based multivariate analyses also indicated that the three catchments were significantly different in terms of macroinvertebrate communities. All these findings suggest that habitat filtering, i.e., environmental differences among catchments, determines the variability of macroinvertebrate communities, thereby contributing to the significant biological differences among the catchments. The main implications of our study is that the sensitivity of trait-based analyses to natural environmental variation should be carefully incorporated in the assessment of environmental degradation, and that further studies are needed for a deeper understanding of trait-based community patterns across near-pristine streams

    Functional traits of hyporheic and benthic invertebrates reveal importance of wood-driven geomorphological processes to rivers

    Get PDF
    1.Large wood (LW) is a natural element of river environments and an integral component of many river restoration schemes to promote biodiversity. It is an important habitat in itself, but it also induces a wide range of hydraulic, hydrological, geomorphological, and chemical conditions that influence the ecological community. However, the effects of hydro‐geomorphological processes induced by LW on local benthic and hyporheic invertebrates have not been well characterized. 2.A functional approach was applied to invertebrate data collected in a field survey at sites with LW and without LW (control), to investigate the response of hyporheic and benthic invertebrates’ trait profiles in response to local LW‐induced processes. 3.We hypothesized LW sites to be associated with different trait modalities than control sites in relation to wood‐induced processes and conditions (i.e. hyporheic exchange flow, oxygen availability, temporal stability, organic matter, denitrification, hydraulic conductivity). Multivariate analyses and Partial Least Squares (PLS) Path Modelling were used to detect the differences in trait profiles between LW and control sites and to study the variation of traits as a function of hydrological, sedimentological, physical and chemical variables. 4.Biological (i.e. aquatic stages, reproduction), physiological (i.e. dispersal, feeding habits) and behavioural (i.e. substrate preferences) trait utilization by the hyporheic meiofauna differed between LW and control sites. At LW sites, the hyporheic meiofaunal assemblage was significantly associated with aquatic active dispersal, aquatic eggs and hard substrate preferences. This trait category selection was linked to changes in physical‐sedimentological processes at LW sites when compared to control sites. Macrofaunal benthic and hyporheic functional traits did not differ significasignificantly between wood and control sites, suggesting similar functioning of these assemblages at the surface‐subsurface interface. 5.This study found that LW affects invertebrate traits by altering fluvial processes to produce, locally, a mosaic of habitats. Hyporheic meiofauna trait responses to LW‐processes have suggested (i) the crucial role of LW in supporting river benthic zone functioning, and thus (ii) a possible benefit to river restoration by enhancing functional interactions among different ecological niches

    Resolving the Discrepancy in Tortuosity Factor Estimation for Li-Ion Battery Electrodes through Micro-Macro Modeling and Experiment

    Get PDF
    Battery performance is strongly correlated with electrode microstructural properties. Of the relevant properties, the tortuosity factor of the electrolyte transport paths through microstructure pores is important as it limits battery maximum charge/discharge rate, particularly for energy-dense thick electrodes. Tortuosity factor however, is difficult to precisely measure, and thus its estimation has been debated frequently in the literature. Herein, three independent approaches have been applied to quantify the tortuosity factor of lithium-ion battery electrodes. The first approach is a microstructure model based on three-dimensional geometries from X-ray computed tomography (CT) and stochastic reconstructions enhanced with computationally generated carbon/binder domain (CBD), as CT is often unable to resolve the CBD. The second approach uses a macro-homogeneous model to fit electrochemical data at several rates, providing a separate estimation of the tortuosity factor. The third approach experimentally measures tortuosity factor via symmetric cells employing a blocking electrolyte. Comparisons have been made across the three approaches for 14 graphite and nickel-manganese-cobalt oxide electrodes. Analysis suggests that if the tortuosity factor were characterized based on the active material skeleton only, the actual tortuosities would be 1.35–1.81 times higher for calendered electrodes. Correlations are provided for varying porosity, CBD phase interfacial arrangement and solid particle morphology
    corecore