22 research outputs found

    Simultaneous circulation of genotypes I and III of dengue virus 3 in Colombia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dengue is a major health problem in tropical and subtropical regions. In Colombia, dengue viruses (DENV) cause about 50,000 cases annually, 10% of which involve Dengue Haemorrhagic Fever/Dengue Shock Syndrome. The picture is similar in other surrounding countries in the Americas, with recent outbreaks of severe disease, mostly associated with DENV serotype 3, strains of the Indian genotype, introduced into the Americas in 1994.</p> <p>Results</p> <p>The analysis of the 3'end (224 bp) of the envelope gene from 32 DENV-3 strains recently recovered in Colombia confirms the circulation of the Indian genotype, and surprisingly the co-circulation of an Asian-Pacific genotype only recently described in the Americas.</p> <p>Conclusion</p> <p>These results have important implications for epidemiology and surveillance of DENV infection in Central and South America. Molecular surveillance of the DENV genotypes infecting humans could be a very valuable tool for controlling/mitigating the impact of the DENV infection.</p

    Phylogenetic history demonstrates two different lineages of dengue type 1 virus in Colombia

    Get PDF
    Background: Dengue Fever is one of the most important viral re-emergent diseases affecting about 50 million people around the world especially in tropical and sub-tropical countries. In Colombia, the virus was first detected in the earliest 70′s when the disease became a major public health concern. Since then, all four serotypes of the virus have been reported. Although most of the huge outbreaks reported in this country have involved dengue virus serotype 1 (DENV-1), there are not studies about its origin, genetic diversity and distribution. Results: We used 224 bp corresponding to the carboxyl terminus of envelope (E) gene from 74 Colombian isolates in order to reconstruct phylogenetic relationships and to estimate time divergences. Analyzed DENV-1 Colombian isolates belonged to the formerly defined genotype V. Only one virus isolate was clasified in the genotype I, likely representing a sole introduction that did not spread. The oldest strains were closely related to those detected for the first time in America in 1977 from the Caribbean and were detected for two years until their disappearance about six years later. Around 1987, a split up generated 2 lineages that have been evolving separately, although not major aminoacid changes in the analyzed region were found. Conclusion: DENV-1 has been circulating since 1978 in Colombia. Yet, the phylogenetic relationships between strains isolated along the covered period of time suggests that viral strains detected in some years, although belonging to the same genotype V, have different recent origins corresponding to multiple re-introduction events of viral strains that were circulating in neighbor countries. Viral strains used in the present study did not form a monophyletic group, which is evidence of a polyphyletic origin. We report the rapid spread patterns and high evolution rate of the different DENV-1 lineages

    Phylogenetic reconstruction of dengue virus type 2 in Colombia

    Get PDF
    Background: Dengue fever is perhaps the most important viral re-emergent disease especially in tropical and subtropical countries, affecting about 50 million people around the world yearly. In Colombia, dengue virus was first detected in 1971 and still remains as a major public health issue. Although four viral serotypes have been recurrently identified, dengue virus type 2 (DENV-2) has been involved in the most important outbreaks during the last 20 years, including 2010 when the fatality rate highly increased. As there are no major studies reviewing virus origin and genotype distribution in this country, the present study attempts to reconstruct the phylogenetic history of DENV-2 using a sequence analysis from a 224 bp PCR-amplified product corresponding to the carboxyl terminus of the envelope (E) gene from 48 Colombian isolates. Results: As expected, the oldest isolates belonged to the American genotype (subtype V), but the strains collected since 1990 represent the American/Asian genotype (subtype IIIb) as previously reported in different American countries. Interestingly, the introduction of this genotype coincides with the first report of dengue hemorrhagic fever in Colombia at the end of 1989 and the increase of cases during the next years. Conclusion: After replacement of the American genotype, several lineages of American/Asian subtype have rapidly spread all over the country evolving in new clades. Nevertheless, the direct association of these new variants in the raise of lethality rate observed during the last outbreak has to be demonstrated

    Evolution in spatially mixed host environments increases divergence for evolved fitness and intrapopulation genetic diversity in RNA viruses

    No full text
    Virus populationsmay be challenged to evolve in spatially heterogeneous environments, such asmixtures of host cells that pose differing selection pressures. Spatial heterogeneitymay select for evolved polymorphisms, wheremultiple virus subpopulations coexist by specializing on a narrow subset of the available hosts. Alternatively, spatial heterogeneitymay select for evolved generalism, where a single genotype dominates the virus population by occupying a relatively broader host niche. In addition, the extent of spatial heterogeneity should influence the degree of divergence among virus populations encountering identical environmental challenges. Spatial heterogeneity creates environmental complexity that should increase the probability of differing adaptive phenotypic solutions, thus producing greater divergence among replicate virus populations, relative to counterparts evolving in strictly homogeneous host environments. Here, we tested these ideas using experimental evolution of RNA virus populations grown in laboratory tissue culture. We allowed vesicular stomatitis virus (VSV) lineages to evolve in replicated environments containing BHK-21 (baby hamster kidney) cells, HeLa (human epithelial) cells, or spatially heterogeneous host cellmixtures. Results showed that generalist phenotypes dominated in evolved virus populations across all treatments. Also, we observed greater variance in host-use performance (fitness) among VSV lineages evolved under spatial heterogeneity, relative to lineages evolved in homogeneous environments. Despitemeasurable differences in fitness, consensus Sanger sequencing revealed no fixed genetic differences separating the evolved lineages from their common ancestor. In contrast, deep sequencing of evolved VSV populations confirmed that the degree of divergence among replicate lineages was correlated with a larger number of minority variants. This correlation between divergence and the number ofminority variants was significant only when we considered variants with a frequency of at least 10 per cent in the population. The number of lower-frequencyminority variants per population did not significantly correlate with divergence

    Generation of a DNA-launched reporter replicon based on dengue virus type 2 as a multipurpose platform

    No full text
    Dengue viruses (DENV) have become the most important arthropod-borne viruses, causing dengue and severe dengue fever in at least 50-100 million cases each year, mainly in tropical and subtropical countries. During recent years, important advances in the molecular biology concerning the life cycle of these viruses have allowed the manipulation and generation of recombinant viruses and replicons with multiple applications, mainly in viral biology and the screening of antiviral compounds. In the present study, we describe the construction of an enhanced green fluorescent protein-bearing DENV replicon under the control of the cytomegalovirus immediate early promoter. Following a rational in silico design and cloning by standard molecular biology techniques, a reporter DENV-2 replicon and a replication-deficient mutant were constructed, and characterized by confocal microscopy and real-time RT-PCR. The results showed successful transcription, translation, and autonomous viral RNA replication of the DENV replicon from its DNA clone. This novel DENV replicon will allow the study of viral replication and testing of antiviral candidates without the need for in vitro transcription.This study was financially supported through funding from the Departamento Administrativo de Ciencia, Tecnología e Innovación - Colciencias (Colombia) grant 111545921525, and the Ministry of Economy of Spain (MINECO; BIO2013-42869-R) and the Fogarty International Center and NIA NIH Institute under Award No. RO1-AG029802-01. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. J.A.U.-C. was recipient of a National Doctoral Fellowship from Colciencias

    Phylogenetic history demonstrates two different lineages of dengue type 1 virus in Colombia

    No full text
    Abstract Background Dengue Fever is one of the most important viral re-emergent diseases affecting about 50 million people around the world especially in tropical and sub-tropical countries. In Colombia, the virus was first detected in the earliest 70's when the disease became a major public health concern. Since then, all four serotypes of the virus have been reported. Although most of the huge outbreaks reported in this country have involved dengue virus serotype 1 (DENV-1), there are not studies about its origin, genetic diversity and distribution. Results We used 224 bp corresponding to the carboxyl terminus of envelope (E) gene from 74 Colombian isolates in order to reconstruct phylogenetic relationships and to estimate time divergences. Analyzed DENV-1 Colombian isolates belonged to the formerly defined genotype V. Only one virus isolate was clasified in the genotype I, likely representing a sole introduction that did not spread. The oldest strains were closely related to those detected for the first time in America in 1977 from the Caribbean and were detected for two years until their disappearance about six years later. Around 1987, a split up generated 2 lineages that have been evolving separately, although not major aminoacid changes in the analyzed region were found. Conclusion DENV-1 has been circulating since 1978 in Colombia. Yet, the phylogenetic relationships between strains isolated along the covered period of time suggests that viral strains detected in some years, although belonging to the same genotype V, have different recent origins corresponding to multiple re-introduction events of viral strains that were circulating in neighbor countries. Viral strains used in the present study did not form a monophyletic group, which is evidence of a polyphyletic origin. We report the rapid spread patterns and high evolution rate of the different DENV-1 lineages.</p

    Molecular characterization of dengue virus reveals regional diversification of serotype 2 in Colombia

    No full text
    Dengue is hyperendemic in Colombia, where a cyclic behavior of serotype replacement leading to periodic epidemics has been observed for decades. This level of endemicity favors accumulation of dengue virus genetic diversity and could be linked to disease outcome. To assess the genetic diversity of dengue virus type 2 in Colombia, we sequenced the envelope gene of 24 virus isolates from acute cases of dengue or severe dengue fever during the period 2013–2016. The phylogenetic analysis revealed the circulation of the Asian-American genotype of dengue virus type 2 in Colombia during that period, the intra-genotype variability leading to divergence in two recently circulating lineages with differential geographic distribution, as well as the presence of nonsynonymous substitutions accompanying their emergence and diversification
    corecore