39 research outputs found

    Omnivoria e repartição de recursos em águas pobres em nutrientes da Bacia do Rio Negro

    Get PDF
    Amazonian biodiversity is notorious, this is also valid for the fauna of the mineral-deficient waters of the Rio Negro System. Some 25 years of research on the benthic fauna of Central Amazonian streams resulted in species-rich foodwebs with a high degree of omnivory within dense animal communities. To exemplify the taxonomic range of omnivorous consumers, the detailed resource spectra of 18 consumer species, including Protozoa (2 species), Platyhelminthes (1 species), insects (2 species), fish (6 species) and shrimps (Decapoda, 7 species), associated primarily with the benthic habitats of Rio Negro tributaries, are presented. Special features of omnivory are characterized, and the importance of litter-decomposing fungi as essential energy input into the foodwebs is documented. It is shown that general omnivory -diverse omnivore consumers sharing most of the resource types- is a prevalent feature. The relevance of this general omnivory for the maintenance of biodiversity is discussed.A biodiversidade do Amazonas é notório e isto também é válido para as águas pobres em nutrientes da bacia do Rio Negro. Uma pesquisa de 25 anos da fauna béntica de igarapés da Amazônia Central resultou em redes alimentares caraterizadas por alta diversidade de espécies, por intensa omnivoria e por alta densidade populacional. Para demonstrar a generalidade taxonômica de omnivoria no bentos dos igarapés, são apresentados as listas de presas / recursos de 18 espécies de consumidores, sendo Protozoa (2 epécies), Platyhelminthes (1 espécie), insetos (2 espécies), peixes (6 espécies) e camarões (Decapoda, 7 espécies). Diferentes categorias de omnivoria são apresentados, e a importância de fungos decompositores da liteira submersa como input básico de energia nas redes alimentares é demonstrada. É prevalente a omnivoria geral, sendo que as diferentes espécies omnívoros estão utilizando os mesmos recursos. Considera- se a relevância desta omnivoria geral para a manutenção da biodiversidade

    Red swamp crayfish: biology, ecology and invasion - an overview

    Full text link

    Freshwater biodiversity in human-dominated landscapes: Introduction

    No full text
    Worldwide, humans have converted natural wetlands into agricultural areas because of increasing demands for food. Rice paddy fields, farm ponds, fish ponds and irrigation and drainage ditches are typical landscape sectors in rural areas of Monsoon Asia and some parts of Europe and the Americas. Such habitats provide surrogate habitats for a range of aquatic wildlife that once inhabited natural wetlands (Elphick 2000; Lawler 2001). Traditionally, scientists and policy makers have largely focused on designating relatively pristine areas as protected areas for biodiversity conservation. Although zoning or land sparing may be effective especially where large areas of natural habitats remain, in recent decades equal attention has been given to land sharing, in which biodiversity conservation and human use of natural resources are simultaneously promoted in the same area (Fischer et al. 2008). Both land sharing and land sparing have complementary roles in maintaining biodiversity and ecosystem services. The concept of land sharing is not new, because all over the world people in rural areas have maintained and utilized natural resources for centuries. Specifically

    New Policy Directions for Global Pond Conservation

    Get PDF
    Despite the existence of well-established international environmental and nature conservation policies (e.g., the Ramsar Convention and Convention on Biological Diversity) ponds are largely missing from national and international legislation and policy frameworks. Ponds are among the most biodiverse and ecologically important freshwater habitats, and their value lies not only in individual ponds, but more importantly, in networks of ponds (pondscapes). Ponds make an important contribution to society through the ecosystem services they provide, with effective conservation of pondscapes essential to ensuring that these services are maintained. Implementation of current pond conservation through individual site designations does not function at the landscape scale, where ponds contribute most to biodiversity. Conservation and management of pondscapes should complement current national and international nature conservation and water policy/legislation, as pondscapes can provide species protection in landscapes where large-scale traditional conservation areas cannot be established (e.g., urban or agricultural landscapes). We propose practical steps for the effective incorporation or enhancement of ponds within five policy areas: through open water sustainable urban drainage systems in urban planning, increased incentives in agri-environment schemes, curriculum inclusion in education, emphasis on ecological scale in mitigation measures following anthropogenic developments, and the inclusion of pondscapes in conservation policy
    corecore