290 research outputs found

    The Evolution of the Free Movement of Capital

    Get PDF
    After considering the evolution and scope of the capital movement rules, this Article will examine two distinct themes: 1) the treatment of discriminatory taxation under the capital movement rules, looking in particular at whether there is a coherent approach to this issue across the Treaty “freedoms,” and 2) the reaction of the European Court to the extension of the capital movement rules to third countries

    Pathological mechanisms and therapeutic outlooks for arthrofibrosis

    Get PDF
    Arthrofibrosis is a fibrotic joint disorder that begins with an inflammatory reaction to insults such as injury, surgery and infection. Excessive extracellular matrix and adhesions contract pouches, bursae and tendons, cause pain and prevent a normal range of joint motion, with devastating consequences for patient quality of life. Arthrofibrosis affects people of all ages, with published rates varying. The risk factors and best management strategies are largely unknown due to a poor understanding of the pathology and lack of diagnostic biomarkers. However, current research into the pathogenesis of fibrosis in organs now informs the understanding of arthrofibrosis. The process begins when stress signals stimulate immune cells. The resulting cascade of cytokines and mediators drives fibroblasts to differentiate into myofibroblasts, which secrete fibrillar collagens and transforming growth factor-β (TGF-β). Positive feedback networks then dysregulate processes that normally terminate healing processes. We propose two subtypes of arthrofibrosis occur: active arthrofibrosis and residual arthrofibrosis. In the latter the fibrogenic processes have resolved but the joint remains stiff. The best therapeutic approach for each subtype may differ significantly. Treatment typically involves surgery, however, a pharmacological approach to correct dysregulated cell signalling could be more effective. Recent research shows that myofibroblasts are capable of reversing differentiation, and understanding the mechanisms of pathogenesis and resolution will be essential for the development of cell-based treatments. Therapies with significant promise are currently available, with more in development, including those that inhibit TGF-β signalling and epigenetic modifications. This review focuses on pathogenesis of sterile arthrofibrosis and therapeutic treatments. © 2019, The Author(s)

    Recruitment, retention, and training of people with type 2 diabetes as diabetes prevention mentors (DPM) to support a healthcare professional-delivered diabetes prevention program:The Norfolk Diabetes Prevention Study (NDPS)

    Get PDF
    Objective: Intensive lifestyle interventions reduce the risk of type 2 diabetes in populations at highest risk, but staffing levels are usually unable to meet the challenge of delivering effective prevention strategies to a very large at-risk population. Training volunteers with existing type 2 diabetes to support healthcare professionals deliver lifestyle interventions is an attractive option. Methods: We identified 141 973 people at highest risk of diabetes in the East of England, screened 12 778, and randomized 1764 into a suite of type 2 diabetes prevention and screen detected type 2 diabetes management trials. A key element of the program tested the value of volunteers with type 2 diabetes, trained to act as diabetes prevention mentors (DPM) when added to an intervention arm delivered by healthcare professionals trained to support participant lifestyle change. Results: We invited 9951 people with type 2 diabetes to become DPM and 427 responded (4.3%). Of these, 356 (83.3%) were interviewed by phone, and of these 131 (36.8%) were interviewed in person. We then appointed 104 of these 131 interviewed applicants (79%) to the role (mean age 62 years, 55% (n=57) male). All DPMs volunteered for a total of 2895 months, and made 6879 telephone calls to 461 randomized participants. Seventy-six (73%) DPMs volunteered for at least 6 months and 66 (73%) for at least 1 year. Discussion: Individuals with type 2 diabetes can be recruited, trained and retained as DPM in large numbers to support a group-based diabetes prevention program delivered by healthcare professionals. This volunteer model is low cost, and accesses the large type 2 diabetes population that shares a lifestyle experience with the target population. This is an attractive model for supporting diabetes prevention efforts

    Information and Risk Modification Trial (INFORM): design of a randomised controlled trial of communicating different types of information about coronary heart disease risk, alongside lifestyle advice, to achieve change in health-related behaviour

    Get PDF
    Abstract Background Cardiovascular disease (CVD) remains the leading cause of death globally. Primary prevention of CVD requires cost-effective strategies to identify individuals at high risk in order to help target preventive interventions. An integral part of this approach is the use of CVD risk scores. Limitations in previous studies have prevented reliable inference about the potential advantages and the potential harms of using CVD risk scores as part of preventive strategies. We aim to evaluate short-term effects of providing different types of information about coronary heart disease (CHD) risk, alongside lifestyle advice, on health-related behaviours. Methods/Design In a parallel-group, open randomised trial, we are allocating 932 male and female blood donors with no previous history of CVD aged 40–84 years in England to either no intervention (control group) or to one of three active intervention groups: i) lifestyle advice only; ii) lifestyle advice plus information on estimated 10-year CHD risk based on phenotypic characteristics; and iii) lifestyle advice plus information on estimated 10-year CHD risk based on phenotypic and genetic characteristics. The primary outcome is change in objectively measured physical activity. Secondary outcomes include: objectively measured dietary behaviours; cardiovascular risk factors; current medication and healthcare usage; perceived risk; cognitive evaluation of provision of CHD risk scores; and psychological outcomes. The follow-up assessment takes place 12 weeks after randomisation. The experiences, attitudes and concerns of a subset of participants will be also studied using individual interviews and focus groups. Discussion The INFORM study has been designed to provide robust findings about the short-term effects of providing different types of information on estimated 10-year CHD risk and lifestyle advice on health-related behaviours. Trial registration Current Controlled Trials ISRCTN17721237 . Registered 12 January 2015

    Design and construction of the MicroBooNE Cosmic Ray Tagger system

    Get PDF
    The MicroBooNE detector utilizes a liquid argon time projection chamber (LArTPC) with an 85 t active mass to study neutrino interactions along the Booster Neutrino Beam (BNB) at Fermilab. With a deployment location near ground level, the detector records many cosmic muon tracks in each beam-related detector trigger that can be misidentified as signals of interest. To reduce these cosmogenic backgrounds, we have designed and constructed a TPC-external Cosmic Ray Tagger (CRT). This sub-system was developed by the Laboratory for High Energy Physics (LHEP), Albert Einstein center for fundamental physics, University of Bern. The system utilizes plastic scintillation modules to provide precise time and position information for TPC-traversing particles. Successful matching of TPC tracks and CRT data will allow us to reduce cosmogenic background and better characterize the light collection system and LArTPC data using cosmic muons. In this paper we describe the design and installation of the MicroBooNE CRT system and provide an overview of a series of tests done to verify the proper operation of the system and its components during installation, commissioning, and physics data-taking

    Ionization Electron Signal Processing in Single Phase LArTPCs II. Data/Simulation Comparison and Performance in MicroBooNE

    Full text link
    The single-phase liquid argon time projection chamber (LArTPC) provides a large amount of detailed information in the form of fine-grained drifted ionization charge from particle traces. To fully utilize this information, the deposited charge must be accurately extracted from the raw digitized waveforms via a robust signal processing chain. Enabled by the ultra-low noise levels associated with cryogenic electronics in the MicroBooNE detector, the precise extraction of ionization charge from the induction wire planes in a single-phase LArTPC is qualitatively demonstrated on MicroBooNE data with event display images, and quantitatively demonstrated via waveform-level and track-level metrics. Improved performance of induction plane calorimetry is demonstrated through the agreement of extracted ionization charge measurements across different wire planes for various event topologies. In addition to the comprehensive waveform-level comparison of data and simulation, a calibration of the cryogenic electronics response is presented and solutions to various MicroBooNE-specific TPC issues are discussed. This work presents an important improvement in LArTPC signal processing, the foundation of reconstruction and therefore physics analyses in MicroBooNE.Comment: 54 pages, 36 figures; the first part of this work can be found at arXiv:1802.0870

    The Pandora multi-algorithm approach to automated pattern recognition of cosmic-ray muon and neutrino events in the MicroBooNE detector

    Get PDF
    The development and operation of Liquid-Argon Time-Projection Chambers for neutrino physics has created a need for new approaches to pattern recognition in order to fully exploit the imaging capabilities offered by this technology. Whereas the human brain can excel at identifying features in the recorded events, it is a significant challenge to develop an automated, algorithmic solution. The Pandora Software Development Kit provides functionality to aid the design and implementation of pattern-recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition, in which individual algorithms each address a specific task in a particular topology. Many tens of algorithms then carefully build up a picture of the event and, together, provide a robust automated pattern-recognition solution. This paper describes details of the chain of over one hundred Pandora algorithms and tools used to reconstruct cosmic-ray muon and neutrino events in the MicroBooNE detector. Metrics that assess the current pattern-recognition performance are presented for simulated MicroBooNE events, using a selection of final-state event topologies.Comment: Preprint to be submitted to The European Physical Journal

    Extragalactic Star Cluster Science with the Nancy Grace Roman Space Telescope's High Latitude Wide Area Survey and the Vera C. Rubin Observatory

    Full text link
    The Nancy Grace Roman Telescope's High Latitude Wide Area Survey will have a number of synergies with the Vera Rubin Observatory's Legacy Survey of Space and Time (LSST), particularly for extragalactic star clusters. Understanding the nature of star clusters and star cluster systems are key topics in many areas of astronomy, chief among them stellar evolution, high energy astrophysics, galaxy assembly/dark matter, the extragalactic distance scale, and cosmology. One of the challenges will be disentangling the age/metallicity degeneracy because young (\simMyr) metal-rich clusters have similar SEDs to old (\simGyr) metal-poor clusters. Rubin will provide homogeneous, ugrizyugrizy photometric coverage, and measurements in the red Roman filters will help break the age-metallicity and age-extinction degeneracies, providing the first globular cluster samples that cover wide areas while essentially free of contamination from Milky Way stars. Roman's excellent spatial resolution will also allow measurements of cluster sizes. We advocate for observations of a large sample of galaxies with a range of properties and morphologies in the Rubin/LSST footprint matching the depth of the LSST Wide-Fast-Deep field ii band limit (26.3 mag), and recommend adding the F213 filter to the survey.Comment: white paper submitted for Roman CCS inpu

    A Deep Neural Network for Pixel-Level Electromagnetic Particle Identification in the MicroBooNE Liquid Argon Time Projection Chamber

    Full text link
    We have developed a convolutional neural network (CNN) that can make a pixel-level prediction of objects in image data recorded by a liquid argon time projection chamber (LArTPC) for the first time. We describe the network design, training techniques, and software tools developed to train this network. The goal of this work is to develop a complete deep neural network based data reconstruction chain for the MicroBooNE detector. We show the first demonstration of a network's validity on real LArTPC data using MicroBooNE collection plane images. The demonstration is performed for stopping muon and a νμ\nu_\mu charged current neutral pion data samples

    Noise Characterization and Filtering in the MicroBooNE Liquid Argon TPC

    Full text link
    The low-noise operation of readout electronics in a liquid argon time projection chamber (LArTPC) is critical to properly extract the distribution of ionization charge deposited on the wire planes of the TPC, especially for the induction planes. This paper describes the characteristics and mitigation of the observed noise in the MicroBooNE detector. The MicroBooNE's single-phase LArTPC comprises two induction planes and one collection sense wire plane with a total of 8256 wires. Current induced on each TPC wire is amplified and shaped by custom low-power, low-noise ASICs immersed in the liquid argon. The digitization of the signal waveform occurs outside the cryostat. Using data from the first year of MicroBooNE operations, several excess noise sources in the TPC were identified and mitigated. The residual equivalent noise charge (ENC) after noise filtering varies with wire length and is found to be below 400 electrons for the longest wires (4.7 m). The response is consistent with the cold electronics design expectations and is found to be stable with time and uniform over the functioning channels. This noise level is significantly lower than previous experiments utilizing warm front-end electronics.Comment: 36 pages, 20 figure
    corecore