The development and operation of Liquid-Argon Time-Projection Chambers for
neutrino physics has created a need for new approaches to pattern recognition
in order to fully exploit the imaging capabilities offered by this technology.
Whereas the human brain can excel at identifying features in the recorded
events, it is a significant challenge to develop an automated, algorithmic
solution. The Pandora Software Development Kit provides functionality to aid
the design and implementation of pattern-recognition algorithms. It promotes
the use of a multi-algorithm approach to pattern recognition, in which
individual algorithms each address a specific task in a particular topology.
Many tens of algorithms then carefully build up a picture of the event and,
together, provide a robust automated pattern-recognition solution. This paper
describes details of the chain of over one hundred Pandora algorithms and tools
used to reconstruct cosmic-ray muon and neutrino events in the MicroBooNE
detector. Metrics that assess the current pattern-recognition performance are
presented for simulated MicroBooNE events, using a selection of final-state
event topologies.Comment: Preprint to be submitted to The European Physical Journal