19 research outputs found

    DIAGNOSTYKA RÓŻNICOWA ASEPTYCZNEGO I SEPTYCZNEGO OBLUZOWANIA PANEWKI ENDOPROTEZY STAWU BIODROWEGO METODAMI TOMOGRAFII POLARYZACYJNEJ

    Get PDF
    Manuscript contains structural-logical scheme and analytical description of the differential diagnosis of aseptic and septic loosening of the artificial hip joint endoprosthesis using the methods of differential Mueller-matrix mapping of circular birefringence (CB) distributions of polycrystalline synovial films (SF) and results of determining the sensitivity, specificity and accuracy of the wavelet analysis method of differential Mueller-matrix mapping of the distributions of the CB values of polycrystalline films SF patients from the control group and groups with different severity of the hip joint pathology.Manuskrypt zawiera schemat strukturalno-logiczny i opis analityczny diagnostyki różnicowej aseptycznego i septycznego obluzowania sztucznej endoprotezy stawu biodrowego z wykorzystaniem metod różnicowego mapowania macierzy Muellera rozkładów dwójłomności kołowej polikrystalicznych filmów błony maziowej i wyników określania czułości, swoistości i dokładności metody analizy falkowej różnicowego mapowania macierzy Muellera rozkładów wartości dwójłomności kołowej polikrystalicznych filmów SF pacjentów z grupy kontrolnej i grup o różnym nasileniu patologii stawu biodrowego

    Mapping of polycrystalline films of biological fluids utilizing the Jones-matrix formalism

    Get PDF
    Utilizing a polarized light approach, we reconstruct the spatial distribution of birefringence and optical activity in polycrystalline films of biological fluids. The Jones-matrix formalism is used for an accessible quantitative description of these types of optical anisotropy. We demonstrate that differentiation of polycrystalline films of biological fluids can be performed based on a statistical analysis of the distribution of rotation angles and phase shifts associated with the optical activity and birefringence, respectively. Finally, practical operational characteristics, such as sensitivity, specificity and accuracy of the Jones-matrix reconstruction of optical anisotropy, were identified with special emphasis on biomedical application, specifically for differentiation of bile films taken from healthy donors and from patients with cholelithiasis

    Stokes-correlometry analysis of biological tissues with polycrystalline structure

    Get PDF
    Utilizing Stokes-correlometry analysis a new diagnostic approach has been introduced for quantitative assessment of polarization images of histological sections of optically anisotropic biological tissues with different morphological structures and physiological conditions. The developed approach is based on the quantitative assessment of coordinate and phase distributions of the Stokes vector of scattered light. A combined use of statistic, correlation, and fractal analysis is used for resolving variations in optical anisotropy of biological samples. The proposed combined application of the statistical, correlation, and fractal-based evaluates of spatial distributions of `single-point' polarization azimuth, ellipticity, and `two-point' Stokes vector parameters of polarization images of biological tissues histological sections demonstrates a high accuracy (Ac ≥ 90%) in monitoring of optical anisotropy variations within biological tissues

    3D Mueller matrix mapping of layered distributions of depolarisation degree for analysis of prostate adenoma and carcinoma diffuse tissues

    Get PDF
    Prostate cancer is the second most common cancer globally in men, and in some countries is now the most diagnosed form of cancer. It is necessary to differentiate between benign and malignant prostate conditions to give accurate diagnoses. We aim to demonstrate the use of a 3D Mueller matrix method to allow quick and easy clinical differentiation between prostate adenoma and carcinoma tissues with different grades and Gleason scores. Histological sections of benign and malignant prostate tumours, obtained by radical prostatectomy, were investigated. We map the degree of depolarisation in the different prostate tumour tissues using a Mueller matrix polarimeter set-up, based on the superposition of a reference laser beam with the interference pattern of the sample in the image plane. The depolarisation distributions can be directly related to the morphology of the biological tissues. The dependences of the magnitude of the 1st to 4th order statistical moments of the depolarisation distribution are determined, which characterise the distributions of the depolarisation values. To determine the diagnostic potential of the method three groups of histological sections of prostate tumour biopsies were formed. The first group contained 36 adenoma tissue samples, while the second contained 36 carcinoma tissue samples of a high grade (grade 4: poorly differentiated-4 + 4 Gleason score), and the third group contained 36 carcinoma tissue samples of a low grade (grade 1: moderately differentiated-3 + 3 Gleason score). Using the calculated values of the statistical moments, tumour tissues are categorised as either adenoma or carcinoma. A high level (> 90%) accuracy of differentiation between adenoma and carcinoma samples was achieved for each group. Differentiation between the high-grade and low-grade carcinoma samples was achieved with an accuracy of 87.5%. The results demonstrate that Mueller matrix mapping of the depolarisation distribution of prostate tumour tissues can accurately differentiate between adenoma and carcinoma, and between different grades of carcinoma. This represents a first step towards the implementation of 3D Mueller matrix mapping for clinical analysis and diagnosis of prostate tumours

    Embossed topographic depolarisation maps of biological tissues with different morphological structures

    Get PDF
    Layered topographic maps of the depolarisation due to diffuse biological tissues are produced using a polarisation-holographic Mueller matrix method approach. Histological sections of myocardial tissue with a spatially structured optically anisotropic fibrillar network, and parenchymal liver tissue with a polycrystalline island structure are successfully mapped. The topography of the myocardium maps relates to the scattering multiplicity within the volume and the specific morphological structures of the biological crystallite networks. The overall depolarisation map is a convolution of the effects of these two factors. Parenchymal liver tissues behave broadly similarly, but the different biological structures present cause the degree of scattering multiplicity to increase more rapidly with increasing phase. Through statistical analysis, the dependences of the magnitudes of the first to fourth order statistical moments are determined. These moments characterise the changing distributions of the depolarisation values through the volume of biological tissues with different morphological structures. Parenchymal liver tissue depolarisation maps are characterised by larger mean and variance, and less skewness and kurtosis, compared to the distributions for the myocardium. This work demonstrates that a polarisation-holographic Mueller matrix method can be applied to the assessment of the 3D morphology of biological tissues, with applications in disease diagnosis

    Correlation Optics

    Get PDF

    Optical anisotropy composition of benign and malignant prostate tissues revealed by Mueller-matrix imaging

    Get PDF
    A Mueller matrix imaging approach is employed to disclose the three-dimensional composition framework of optical anisotropy within cancerous biotissues. Visualized by the Mueller matrix technique spatial architecture of optical anisotropy of tissues is characterised by high-order statistical moments. Thus, quantitative analysis of the spatial distribution of optical anisotropy, such as linear and circular birefringence and dichroism, is revealed by using high-order statistical moments, enabling definitively discriminate prostate adenoma and carcinoma. The developed approach provides greater (>90%) accuracy of diagnostic achieved by using either the 3-rd or 4-th order statistical moments of the linear anisotropy parameters. Noticeable difference is observed between prostate adenoma and carcinoma tissue samples in terms of the extinction coefficient and the degree of depolarisation. Juxtaposition to other optical diagnostic modalities demonstrates the greater accuracy of the approach described herein, paving the way for its wider application in cancer diagnosis and tissue characterization

    3D Mueller Matrix Reconstruction of the Optical Anisotropy Parameters of Myocardial Histopathology Tissue Samples

    Get PDF
    Diseases affecting myocardial tissues are currently a leading cause of death in developed nations. Fast and reliable techniques for analysing and understanding how tissues are affected by disease and respond to treatment are fundamental to combating the effects of heart disease. A 3D Mueller matrix method that reconstructs the linear and circular birefringence and dichroism parameters has been developed to image the biological structures in myocardial tissues. The required optical data is gathered using a Stokes polarimeter and then processed mathematically to recover the individual optical anisotropy parameters, expanding on existing 2D Mueller matrix implementations by combining with a digital holography approach. Changes in the different optical anisotropy parameters are rationalised with reference to the general tissue structure, such that the structures can be identified from the anisotropy distributions. The first to fourth order statistical moments characterising the distribution of the parameters of the optical anisotropy of the polycrystalline structure of the partially depolarising layer of tissues in different phase sections of their volumes are investigated and analysed. The third and fourth order statistical moments are found to be the most sensitive to changes in the phase and amplitude anisotropy. The possibility of forensic medical differentiation of death in cases of acute coronary insufficiency (ACI) and coronary heart disease (CHD) is considered as a diagnostic application. The optimal phase plane ( θ ∗ = 0.7 r a d ) has been found, in which excellent differentiation accuracy is achieved ACI and CHD - A c ( Δ Z 4 ( θ ∗ , Φ L , Δ L ) ) = 93.05 % ÷ 95.8 % . A comparative analysis of the accuracy of the Mueller-matrix reconstruction of the parameters of the optical anisotropy of the myocardium in different phase planes ( θ = 0.9 r a d and θ = 1.2 r a d ), as well as the 2D Mueller-matrix reconstruction method was carried out. This work demonstrates that a 3D Mueller matrix method can be used to effectively analyse the optical anisotropy parameters of myocardial tissues with potential for definitive diagnostics in forensic medicine

    Mueller-matrix imaging polarimetry elevated by wavelet decomposition and polarization-singular processing for analysis of specific cancerous tissue pathology

    Get PDF
    Significance Mueller-matrix polarimetry is a powerful method allowing for the visualization of malformations in biological tissues and quantitative evaluation of alterations associated with the progression of various diseases. This approach, in fact, is limited in observation of spatial localization and scale-selective changes in the poly-crystalline compound of tissue samples. Aim We aimed to improve the Mueller-matrix polarimetry approach by implementing the wavelet decomposition accompanied with the polarization-singular processing for express differential diagnosis of local changes in the poly-crystalline structure of tissue samples with various pathology. Approach Mueller-matrix maps obtained experimentally in transmitted mode are processed utilizing a combination of a topological singular polarization approach and scale-selective wavelet analysis for quantitative assessment of the adenoma and carcinoma histological sections of the prostate tissues. Results A relationship between the characteristic values of the Mueller-matrix elements and singular states of linear and circular polarization is established within the framework of the phase anisotropy phenomenological model in terms of linear birefringence. A robust method for expedited (up to ∼15 min) polarimetric-based differential diagnosis of local variations in the poly-crystalline structure of tissue samples containing various pathology abnormalities is introduced. Conclusions The benign and malignant states of the prostate tissue are identified and assessed quantitatively with a superior accuracy provided by the developed Mueller-matrix polarimetry approach

    Insights into polycrystalline microstructure of blood films with 3D Mueller matrix imaging approach

    Get PDF
    This study introduces a novel approach in the realm of liquid biopsies, employing a 3D Mueller-matrix (MM) image reconstruction technique to analyze dehydrated blood smear polycrystalline structures. Our research centers on exploiting the unique optical anisotropy properties of blood proteins, which undergo structural alterations at the quaternary and tertiary levels in the early stages of diseases such as cancer. These alterations manifest as distinct patterns in the polycrystalline microstructure of dried blood droplets, offering a minimally invasive yet highly effective method for early disease detection. We utilized a groundbreaking 3D MM mapping technique, integrated with digital holographic reconstruction, to perform a detailed layer-by-layer analysis of partially depolarizing dry blood smears. This method allows us to extract critical optical anisotropy parameters, enabling the differentiation of blood films from healthy individuals and prostate cancer patients. Our technique uniquely combines polarization-holographic and differential MM methodologies to spatially characterize the 3D polycrystalline structures within blood films. A key advancement in our study is the quantitative evaluation of optical anisotropy maps using statistical moments (first to fourth orders) of linear and circular birefringence and dichroism distributions. This analysis provides a comprehensive characterization of the mean, variance, skewness, and kurtosis of these distributions, crucial for identifying significant differences between healthy and cancerous samples. Our findings demonstrate an exceptional accuracy rate of over 90% for the early diagnosis and staging of cancer, surpassing existing screening methods. This high level of precision and the non-invasive nature of our technique mark a significant advancement in the field of liquid biopsies. It holds immense potential for revolutionizing cancer diagnosis, early detection, patient stratification, and monitoring, thereby greatly enhancing patient care and treatment outcomes. In conclusion, our study contributes a pioneering technique to the liquid biopsy domain, aligning with the ongoing quest for non-invasive, reliable, and efficient diagnostic methods. It opens new avenues for cancer diagnosis and monitoring, representing a substantial leap forward in personalized medicine and oncology
    corecore