35 research outputs found

    Non-Gaussian Radio-Wave Scattering in the Interstellar Medium

    Full text link
    It was recently suggested by Boldyrev & Gwinn that the characteristics of radio scintillations from distant pulsars are best understood if the interstellar electron-density fluctuations that cause the time broadening of the radio pulses obey non-Gaussian statistics. In this picture the density fluctuations are inferred to be strong on very small scales (1081010cm\sim 10^8-10^{10} {cm}). We argue that such density structures could correspond to the ionized boundaries of molecular regions (clouds) and demonstrate that the power-law distribution of scattering angles that is required to match the observations arises naturally from the expected intersections of our line of sight with randomly distributed, thin, approximately spherical ionized shells of this type. We show that the observed change in the time-broadening behavior for pulsar dispersion measures 30pccm3\lesssim 30 {\rm pc} {\rm cm}^{-3} is consistent with the expected effect of the general ISM turbulence, which should dominate the scattering for nearby pulsars. We also point out that if the clouds are ionized by nearby stars, then their boundaries may become turbulent on account of an ionization front instability. This turbulence could be an alternative cause of the inferred density structures. An additional effect that might contribute to the strength of the small-scale fluctuations in this case is the expected flattening of the turbulent density spectrum when the eddy sizes approach the proton gyroscale.Comment: 15 pages, 3 figures, accepted to Ap

    Radio-wave propagation in the non-Gaussian interstellar medium

    Full text link
    Radio waves propagating from distant pulsars in the interstellar medium (ISM), are refracted by electron density inhomogeneities, so that the intensity of observed pulses fluctuates with time. The theory relating the observed pulse time-shapes to the electron-density correlation function has developed for 30 years, however, two puzzles have remained. First, observational scaling of pulse broadening with the pulsar distance is anomalously strong; it is consistent with the standard model only when non-uniform statistics of electron fluctuations along the line of sight are assumed. Second, the observed pulse shapes are consistent with the standard model only when the scattering material is concentrated in a narrow slab between the pulsar and the Earth. We propose that both paradoxes are resolved at once if one assumes stationary and uniform, but non-Gaussian statistics of the electron-density distribution. Such statistics must be of Levy type, and the propagating ray should exhibit a Levy flight. We propose that a natural realization of such statistics may be provided by the interstellar medium with random electron-density discontinuities. We develop a theory of wave propagation in such a non-Gaussian random medium, and demonstrate its good agreement with observations. The qualitative introduction of the approach and the resolution of the anomalous-scaling paradox was presented earlier in [PRL 91, 131101 (2003); ApJ 584, 791 (2003)].Comment: 27 pages, changes to match published versio

    Statistics of speckle patterns

    Full text link
    We develop a general method for calculating statistical properties of the speckle pattern of coherent waves propagating in disordered media. In some aspects this method is similar to the Boltzmann-Langevin approach for the calculation of classical fluctuations. We apply the method to the case where the incident wave experiences many small angle scattering events during propagation, but the total angle change remains small. In many aspects our results for this case are different from results previously known in the literature. The correlation function of the wave intensity at two points separated by a distance rr, has a long range character. It decays as a power of rr and changes sign. We also consider sensitivities of the speckles to changes of external parameters, such as the wave frequency and the incidence angle.Comment: 4 pages, 2 figure

    Turbulent ‘stopping plumes’ and plume pinch-off in uniform surroundings

    Get PDF
    Observations of turbulent convection in the environment are of variously sus- tained plume-like flows or intermittent thermal-like flows. At different times of the day the prevailing conditions may change and consequently the observed flow regimes may change. Understanding the link between these flows is of practical importance meteorologically, and here we focus our interest upon plume-like regimes that break up to form thermal-like regimes. It has been shown that when a plume rises from a boundary with low conductivity, such as arable land, the inability to maintain a rapid enough supply of buoyancy to the plume source can result in the turbulent base of the plume separating and rising away from the source. This plume ‘pinch-off’ marks the onset of the intermittent thermal-like behavior. The dynamics of turbulent plumes in a uniform environment are explored in order to investigate the phenomenon of plume pinch-off. The special case of a turbulent plume having its source completely removed, a ‘stopping plume’, is considered in particular. The effects of forcing a plume to pinch-off, by rapidly reducing the source buoyancy flux to zero, are shown experi- mentally. We release saline solution into a tank filled with fresh water generating downward propagating steady turbulent plumes. By rapidly closing the plume nozzle, the plumes are forced to pinch-off. The plumes are then observed to detach from the source and descend into the ambient. The unsteady buoyant region produced after pinch-off, cannot be described by the power-law behavior of either classical plumes or thermals, and so the terminology ‘stopping plume’ (analogous to a ‘starting plume’) is adopted for this type of flow. The propagation of the stopping plume is shown to be approximately linearly dependent on time, and we speculate therefore that the closure of the nozzle introduces some vorticity into the ambient, that may roll up to form a vortex ring dominating the dynamics of the base of a stopping plume

    Probing new physics with long-lived charged particles produced by atmospheric and astrophysical neutrinos

    Get PDF
    As suggested by some extensions of the Standard Model of particle physics, dark matter may be a super-weakly interacting lightest stable particle, while the next-to-lightest particle (NLP) is charged and meta-stable. One could test such a possibility with neutrino telescopes, by detecting the charged NLPs produced in high-energy neutrino collisions with Earth matter. We study the production of charged NLPs by both atmospheric and astrophysical neutrinos; only the latter, which is largely uncertain and has not been detected yet, was the focus of previous studies. We compute the resulting fluxes of the charged NLPs, compare those of different origins, and analyze the dependence on the underlying particle physics setup. We point out that even if the astrophysical neutrino flux is very small, atmospheric neutrinos, especially those from the prompt decay of charmed mesons, may provide a detectable flux of NLP pairs at neutrino telescopes such as IceCube. We also comment on the flux of charged NLPs expected from proton-nucleon collisions, and show that, for theoretically motivated and phenomenologically viable models, it is typically sub-dominant and below detectable rates.Comment: 27 pages, 6 figures; accepted for publication in JCA

    Analysis of the capacity of google trends to measure interest in conservation topics and the role of online news

    Get PDF
    With the continuous growth of internet usage, Google Trends has emerged as a source of information to investigate how social trends evolve over time. Knowing how the level of interest in conservation topics--approximated using Google search volume--varies over time can help support targeted conservation science communication. However, the evolution of search volume over time and the mechanisms that drive peaks in searches are poorly understood. We conducted time series analyses on Google search data from 2004 to 2013 to investigate: (i) whether interests in selected conservation topics have declined and (ii) the effect of news reporting and academic publishing on search volume. Although trends were sensitive to the term used as benchmark, we did not find that public interest towards conservation topics such as climate change, ecosystem services, deforestation, orangutan, invasive species and habitat loss was declining. We found, however, a robust downward trend for endangered species and an upward trend for ecosystem services. The quantity of news articles was related to patterns in Google search volume, whereas the number of research articles was not a good predictor but lagged behind Google search volume, indicating the role of news in the transfer of conservation science to the public

    Understanding conspiracy theories

    Get PDF
    Scholarly efforts to understand conspiracy theories have grown significantly in recent years, and there is now a broad and interdisciplinary literature that we review in this article. We ask three specific questions. First, what are the factors that are associated with conspiracy theorizing? Our review of the literature shows that conspiracy beliefs result from a range of psychological, political and social factors. Next, how are conspiracy theories communicated? Here, we explain how conspiracy theories are shared among individuals and spread through traditional and social media platforms. Next, what are the risks and rewards associated with conspiracy theories? By focusing on politics and science, we argue that conspiracy theories do more harm than good. Finally, because this is a growing literature and many open questions remain, we conclude by suggesting several promising avenues for future research

    Consensus statement on abusive head trauma in infants and young children

    Get PDF
    Abusive head trauma (AHT) is the leading cause of fatal head injuries in children younger than 2 years. A multidisciplinary team bases this diagnosis on history, physical examination, imaging and laboratory findings. Because the etiology of the injury is multifactorial (shaking, shaking and impact, impact, etc.) the current best and inclusive term is AHT. There is no controversy concerning the medical validity of the existence of AHT, with multiple components including subdural hematoma, intracranial and spinal changes, complex retinal hemorrhages, and rib and other fractures that are inconsistent with the provided mechanism of trauma. The workup must exclude medical diseases that can mimic AHT. However, the courtroom has become a forum for speculative theories that cannot be reconciled with generally accepted medical literature. There is no reliable medical evidence that the following processes are causative in the constellation of injuries of AHT: cerebral sinovenous thrombosis, hypoxic-ischemic injury, lumbar puncture or dysphagic choking/vomiting. There is no substantiation, at a time remote from birth, that an asymptomatic birth-related subdural hemorrhage can result in rebleeding and sudden collapse. Further, a diagnosis of AHT is a medical conclusion, not a legal determination of the intent of the perpetrator or a diagnosis of murder. We hope that this consensus document reduces confusion by recommending to judges and jurors the tools necessary to distinguish genuine evidence-based opinions of the relevant medical community from legal arguments or etiological speculations that are unwarranted by the clinical findings, medical evidence and evidence-based literature
    corecore