29 research outputs found

    Role of ABCC1 in export of sphingosine-1-phosphate from mast cells

    No full text
    Mast cells play a pivotal role in inflammatory and immediate-type allergic reactions by secreting a variety of potent inflammatory mediators, including sphingosine-1-phosphate (S1P). However, it is not known how S1P is released from cells. Here, we report that S1P is exported from mast cells independently of their degranulation and demonstrate that it is mediated by ATP binding cassette (ABC) transporters. Constitutive and antigen-stimulated S1P release was inhibited by MK571, an inhibitor of ABCC1 (MRP1), but not by inhibitors of ABCB1 (MDR-1, P-glycoprotein). Moreover, down-regulation of ABCC1 with small interfering RNA, which decreased its cell surface expression, markedly reduced S1P export from both rat RBL-2H3 and human LAD2 mast cells. Transport of S1P by ABCC1 influenced migration of mast cells toward antigen but not degranulation. These findings have important implications for S1P functions in mast cell-mediated immune responses

    Sphingosine 1-Phosphate Produced by Sphingosine Kinase 2 Intrinsically Controls Platelet Aggregation In Vitro and In Vivo

    No full text
    RATIONALE Platelets are known to play a crucial role in hemostasis. Sphingosine kinases (Sphk) 1 and 2 catalyze the conversion of sphingosine to the bioactive metabolite sphingosine 1-phosphate (S1P). Although platelets are able to secrete S1P on activation, little is known about a potential intrinsic effect of S1P on platelet function. OBJECTIVE To investigate the role of Sphk1- and Sphk2-derived S1P in the regulation of platelet function. METHODS AND RESULTS We found a 100-fold reduction in intracellular S1P levels in platelets derived from Sphk2(-/-) mutants compared with Sphk1(-/-) or wild-type mice, as analyzed by mass spectrometry. Sphk2(-/-) platelets also failed to secrete S1P on stimulation. Blood from Sphk2-deficient mice showed decreased aggregation after protease-activated receptor 4-peptide and adenosine diphosphate stimulation in vitro, as assessed by whole blood impedance aggregometry. We revealed that S1P controls platelet aggregation via the sphingosine 1-phosphate receptor 1 through modulation of protease-activated receptor 4-peptide and adenosine diphosphate-induced platelet activation. Finally, we show by intravital microscopy that defective platelet aggregation in Sphk2-deficient mice translates into reduced arterial thrombus stability in vivo. CONCLUSIONS We demonstrate that Sphk2 is the major Sphk isoform responsible for the generation of S1P in platelets and plays a pivotal intrinsic role in the control of platelet activation. Correspondingly, Sphk2-deficient mice are protected from arterial thrombosis after vascular injury, but have normal bleeding times. Targeting this pathway could therefore present a new therapeutic strategy to prevent thrombosis

    Eukaryotic elongation factor 1A interacts with sphingosine kinase and directly enhances its catalytic activity

    No full text
    Sphingosine 1-phosphate (S1P) has many important roles in mammalian cells, including contributing to the control of cell survival and proliferation. S1P is generated by sphingosine kinases (SKs), of which two mammalian isoforms have been identified (SK1 and SK2). To gain a better understanding of SK regulation, we have used a yeast two-hybrid screen to identify SK1-interacting proteins and established elongation factor 1A (eEF1A) as one such protein that associates with both SK1 and SK2. We show the direct interaction of eEF1A with the SKs in vitro, whereas the physiological relevance of this association was demonstrated by co-immunoprecipitation of the endogenous proteins from cell lysates. Although the canonical role of eEF1A resides in protein synthesis, it has also been implicated in other roles, including regulating the activity of some signaling enzymes. Thus, we examined the potential role of eEF1A in regulation of the SKs and show that eEF1A is able to directly increase the activity of SK1 and SK2 approximately 3-fold in vitro. Substrate kinetics demonstrated that eEF1A increased the catalytic rate of both SKs, while having no observable effect on substrate affinities of these enzymes for either ATP or sphingosine. Overexpression of eEF1A in quiescent Chinese hamster ovary cells increased cellular SK activity, whereas a small interfering RNA-mediated decrease in eEF1A levels in MCF7 cells substantially reduced cellular SK activity and S1P levels, supporting the in vivo physiological relevance of this interaction. Thus, this study has established a novel mechanism of regulation of both SK1 and SK2 that is mediated by their interaction with eEF1A.Tamara M. Leclercq, Paul A. B. Moretti, Mathew A. Vadas, and Stuart M. Pitso

    Distinct roles of sphingosine kinases 1 and 2 in human mast-cell functions

    No full text
    Sphingosine-1-phosphate (S1P) is now emerging as a potent lipid mediator produced by mast cells that contributes to inflammatory and allergic responses. In contrast to its weak effect on degranulation of murine mast cells, S1P potently induced degranulation of the human LAD2 mast-cell line and cord blood–derived human mast cells (hMCs). S1P also stimulated production and secretion of cytokines, TNF-α and IL-6, and markedly enhanced secretion of a chemokine, CCL2/MCP-1, important modulators of inflammation. S1P is produced in mast cells by the 2 sphingosine kinases, SphK1 and SphK2. SphK1 but not SphK2 plays a critical role in IgE/Ag-induced degranulation, migration toward antigen, and CCL2 secretion from hMCs, as determined by specifically down-regulating their expression. However, both isoenzymes were required for efficient TNF-α secretion. Taken together, our data suggest that differential formation of S1P by SphK1 and SphK2 has distinct and important actions in hMCs

    The CCT/TRiC chaperonin is required for maturation of sphingosine kinase 1

    Get PDF
    Copyright © 2008 ElsevierSphingosine kinase 1 (SK1) catalyses the generation of sphingosine 1-phosphate (S1P), a bioactive phospholipid that influences a diverse range of cellular processes, including proliferation, survival, adhesion, migration, morphogenesis and differentiation. SK1 is controlled by various mechanisms, including transcriptional regulation, and post-translational activation by phosphorylation and protein–protein interactions which can regulate both the activity and localisation of this enzyme. To gain a better understanding of the regulatory mechanisms controlling SK1 activity and function we performed a yeast two-hybrid screen to identify SK1-interacting proteins. Using this approach we identified that SK1 interacts with subunit 7 (η) of cytosolic chaperonin CCT (chaperonin containing t-complex polypeptide, also called TRiC for TCP-1 ring complex), a hexadecameric chaperonin that binds unfolded polypeptides and mediates their folding and release in an ATP-dependent manner. Further analysis of the SK1–CCTη interaction demonstrated that other CCT/TRiC subunits also associated with SK1 in HEK293T cell lysates in an ATP-sensitive manner, suggesting that the intact, functional, multimeric CCT/TRiC complex associated with SK1. Furthermore, pulse-chase studies indicated that CCT/TRiC binds specifically to newly translated SK1. Finally, depletion of functional CCT/TRiC through the use of RNA interference in HeLa cells or temperature sensitive CCT yeast mutants reduced cellular SK1 activity. Thus, combined this data suggests that SK1 is a CCT/TRiC substrate, and that this chaperonin facilitates folding of newly translated SK1 into its mature active form.Julia R. Zebol, Niamh M. Hewitt, Paul A. B. Moretti, Helen E. Lynn, Julie A. Lake, Peng Li, Mathew A. Vadas, Binks W. Wattenberg and Stuart M. Pitsonhttp://www.elsevier.com/wps/find/journaldescription.cws_home/395/description#descriptio
    corecore