3,943 research outputs found

    The Belle II Physics Book (Dec, 10.1093/ptep/ptz106, 2019) - correction

    Get PDF
    Autorzy: Kou, E., Urquijo, P., Altmannshofer, W., Beaujean, F., Bell, G., Beneke, M., Bigi, I.I., Bishara, F., Blanke, M., Bobeth, C., Bona, M., Brambilla, N., Braun, V.M., Brod, J., Buras, A.J., Cheng, H.Y., Chiang, C.W., Ciuchini, M., Colangelo, G., Crivellin, A., Czyz, H., Datta, A., De Fazio, F., Deppisch, T., Dolan, M.J., Evans, J., Fajfer, S., Feldmann, T., Godfrey, S., Gronau, M., Grossman, Y., Guo, F.K., Haisch, U., Hanhart, C., Hashimoto, S., Hirose, S., Hisano, J., Hofer, L., Hoferichter, M., Hou, W.S., Huber, T., Hurth, T., Jaeger, S., Jahn, S., Jamin, M., Jones, J., Jung, M., Kagan, A.L., Kahlhoefer, F., Kamenik, J.F., Kaneko, T., Kiyo, Y., Kokulu, A., Kosnik, N., Kronfeld, A.S., Ligeti, Z., Logan, H., Lu, C.D., Lubicz, V., Mahmoudi, F., Maltman, K., Mishima, S., Misiak, M., Moats, K., Moussallam, B., Nefediev, A., Nierste, U., Nomura, D., Offen, N., Olsen, S.L., Passemar, E., Paul, A., Paz, G., Petrov, A.A., Pich, A., Polosa, A.D., Pradler, J., Prelovsek, S., Procura, M., Ricciardi, G., Robinson, D.J., Roig, P., Rosiek, J., Schacht, S., Schmidt-Hoberg, K., Schwichtenberg, J., Sharpe, S.R., Shigemitsu, J., Shih, D., Shimizu, N., Shimizu, Y., Silvestrini, L., Simula, S., Smith, C., Stoffer, P., Straub, D., Tackmann, F.J., Tanaka, M., Tayduganov, A., Tetlalmatzi-Xolocotzi, G., Teubner, T., Vairo, A., Van Dyk, D., Virto, J., Was, Z., Watanabe, R., Watson, I., Westhoff, S., Zupan, J., Zwicky, R., Abudinén, F., Adachi, I., Adamczyk, K., Ahlburg, P., Aihara, H., Aloisio, A., Andricek, L., Anh Ky, N., Arndt, M., Asner, D.M., Atmacan, H., Aushev, T., Aushev, V., Ayad, R., Aziz, T., Baehr, S., Bahinipati, S., Bambade, P., Ban, Y., Barrett, M., Baudot, J., Behera, P., Belous, K., Bender, M., Bennett, J., Berger, M., Bernieri, E., Bernlochner, F.U., Bessner, M., Besson, D., Bettarini, S., Bhardwaj, V., Bhuyan, B., Bilka, T., Bilmis, S., Bilokin, S., Bonvicini, G., Bozek, A., Bračko, M., Branchini, P., Braun, N., Briere, R.A., Browder, T.E., Burmistrov, L., Bussino, S., Cao, L., Caria, G., Casarosa, G., Cecchi, C., Červenkov, D., Chang, M.-C., Chang, P., Cheaib, R., Chekelian, V., Chen, Y., Cheon, B.G., Chilikin, K., Cho, K., Choi, J., Choi, S.-K., Choudhury, S., Cinabro, D., Cremaldi, L.M., Cuesta, D., Cunliffe, S., Dash, N., De La Cruz Burelo, E., De Lucia, E., De Nardo, G., De Nuccio, M., De Pietro, G., De Yta Hernandez, A., Deschamps, B., Destefanis, M., Dey, S., Di Capua, F., Di Carlo, S., Dingfelder, J., Doležal, Z., Domínguez Jiménez, I., Dong, T.V., Dossett, D., Duell, S., Eidelman, S., Epifanov, D., Fast, J.E., Ferber, T., Fiore, S., Fodor, A., Forti, F., Frey, A., Frost, O., Fulsom, B.G., Gabriel, M., Gabyshev, N., Ganiev, E., Gao, X., Gao, B., Garg, R., Garmash, A., Gaur, V., Gaz, A., Geßler, T., Gebauer, U., Gelb, M., Gellrich, A., Getzkow, D., Giordano, R., Giri, A., Glazov, A., Gobbo, B., Godang, R., Gogota, O., Goldenzweig, P., Golob, B., Gradl, W., Graziani, E., Greco, M., Greenwald, D., Gribanov, S., Guan, Y., Guido, E., Guo, A., Halder, S., Hara, K., Hartbrich, O., Hauth, T., Hayasaka, K., Hayashii, H., Hearty, C., Heredia De La Cruz, I., Hernandez Villanueva, M., Hershenhorn, A., Higuchi, T., Hoek, M., Hollitt, S., Hong Van, N.T., Hsu, C.-L., Hu, Y., Huang, K., Iijima, T., Inami, K., Inguglia, G., Ishikawa, A., Itoh, R., Iwasaki, Y., Iwasaki, M., Jackson, P., Jacobs, W.W., Jaegle, I., Jeon, H.B., Ji, X., Jia, S., Jin, Y., Joo, C., Künzel, M., Kadenko, I., Kahn, J., Kakuno, H., Kaliyar, A.B., Kandra, J., Kang, K.H., Kato, Y., Kawasaki, T., Ketter, C., Khasmidatul, M., Kichimi, H., Kim, J.B., Kim, K.T., Kim, H.J., Kim, D.Y., Kim, K., Kim, Y., Kimmel, T.D., Kindo, H., Kinoshita, K., Konno, T., Korobov, A., Korpar, S., Kotchetkov, D., Kowalewski, R., Križan, P., Kroeger, R., Krohn, J.-F., Krokovny, P., Kuehn, W., Kuhr, T., Kulasiri, R., Kumar, M., Kumar, R., Kumita, T., Kuzmin, A., Kwon, Y.-J., Lacaprara, S., Lai, Y.-T., Lalwani, K., Lange, J.S., Lee, S.C., Lee, J.Y., Leitl, P., Levit, D., Levonian, S., Li, S., Li, L.K., Li, Y., Li, Y.B., Li, Q., Li Gioi, L., Libby, J., Liptak, Z., Liventsev, D., Longo, S., Loos, A., Lopez Castro, G., Lubej, M., Lueck, T., Luetticke, F., Luo, T., Müller, F., Müller, T., Macqueen, C., Maeda, Y., Maggiora, M., Maity, S., Manoni, E., Marcello, S., Marinas, C., Martinez Hernandez, M., Martini, A., Matvienko, D., Mckenna, J.A., Meier, F., Merola, M., Metzner, F., Miller, C., Miyabayashi, K., Miyake, H., Miyata, H., Mizuk, R., Mohanty, G.B., Moon, H.K., Moon, T., Morda, A., Morii, T., Mrvar, M., Muroyama, G., Mussa, R., Nakamura, I., Nakano, T., Nakao, M., Nakayama, H., Nakazawa, H., Nanut, T., Naruki, M., Nath, K.J., Nayak, M., Nellikunnummel, N., Neverov, D., Niebuhr, C., Ninkovic, J., Nishida, S., Nishimura, K., Nouxman, M., Nowak, G., Ogawa, K., Onishchuk, Y., Ono, H., Onuki, Y., Pakhlov, P., Pakhlova, G., Pal, B., Paoloni, E., Park, H., Park, C.-S., Paschen, B., Passeri, A., Paul, S., Pedlar, T.K., Perelló, M., Peruzzi, I.M., Pestotnik, R., Piilonen, L.E., Podesta Lerma, L., Popov, V., Prasanth, K., Prencipe, E., Prim, M., Purohit, M.V., Rabusov, A., Rasheed, R., Reiter, S., Remnev, M., Resmi, P.K., Ripp-Baudot, I., Ritter, M., Ritzert, M., Rizzo, G., Rizzuto, L., Robertson, S.H., Rodriguez Perez, D., Roney, J.M., Rosenfeld, C., Rostomyan, A., Rout, N., Rummel, S., Russo, G., Sahoo, D., Sakai, Y., Salehi, M., Sanders, D.A., Sandilya, S., Sangal, A., Santelj, L., Sasaki, J., Sato, Y., Savinov, V., Scavino, B., Schram, M., Schreeck, H., Schueler, J., Schwanda, C., Schwartz, A.J., Seddon, R.M., Seino, Y., Senyo, K., Seon, O., Seong, I.S., Sevior, M.E., Sfienti, C., Shapkin, M., Shen, C.P., Shimomura, M., Shiu, J.-G., Shwartz, B., Sibidanov, A., Simon, F., Singh, J.B., Sinha, R., Skambraks, S., Smith, K., Sobie, R.J., Soffer, A., Sokolov, A., Solovieva, E., Spruck, B., Stanič, S., Starič, M., Starinsky, N., Stolzenberg, U., Stottler, Z., Stroili, R., Strube, J.F., Stypula, J., Sumihama, M., Sumisawa, K., Sumiyoshi, T., Summers, D., Sutcliffe, W., Suzuki, S.Y., Tabata, M., Takahashi, M., Takizawa, M., Tamponi, U., Tan, J., Tanaka, S., Tanida, K., Taniguchi, N., Tao, Y., Taras, P., Tejeda Munoz, G., Tenchini, F., Tippawan, U., Torassa, E., Trabelsi, K., Tsuboyama, T., Uchida, M., Uehara, S., Uglov, T., Unno, Y., Uno, S., Ushiroda, Y., Usov, Y., Vahsen, S.E., Van Tonder, R., Varner, G., Varvell, K.E., Vinokurova, A., Vitale, L., Vos, M., Vossen, A., Waheed, E., Wakeling, H., Wan, K., Wang, M.-Z., Wang, X.L., Wang, B., Warburton, A., Webb, J., Wehle, S., Wessel, C., Wiechczynski, J., Wieduwilt, P., Won, E., Xu, Q., Xu, X., Yabsley, B.D., Yamada, S., Yamamoto, H., Yan, W., Yan, W., Yang, S.B., Ye, H., Yeo, I., Yin, J.H., Yonenaga, M., Yoshinobu, T., Yuan, W., Yuan, C.Z., Yusa, Y., Zakharov, S., Zani, L., Zeyrek, M., Zhang, J., Zhang, Y., Zhang, Y., Zhou, X., Zhukova, V., Zhulanov, V., Zupanc, A.This is a correction to: Progress of Theoretical and Experimental Physics, Volume 2019, Issue 12, December 2019, 123C01, https://doi.org/10.1093/ptep/ptz10

    A lifecourse mendelian randomization study highlights the long-term influence of childhood body size on later life heart structure

    Get PDF
    Children with obesity typically have larger left ventricular heart dimensions during adulthood. However, whether this is due to a persistent effect of adiposity extending into adulthood is challenging to disentangle due to confounding factors throughout the lifecourse. We conducted a multivariable mendelian randomization (MR) study to separate the independent effects of childhood and adult body size on 4 magnetic resonance imaging (MRI) measures of heart structure and function in the UK Biobank (UKB) study. Strong evidence of a genetically predicted effect of childhood body size on all measures of adulthood heart structure was identified, which remained robust upon accounting for adult body size using a multivariable MR framework (e.g., left ventricular end-diastolic volume (LVEDV), Beta = 0.33, 95% confidence interval (CI) = 0.23 to 0.43, P = 4.6 × 10-10). Sensitivity analyses did not suggest that other lifecourse measures of body composition were responsible for these effects. Conversely, evidence of a genetically predicted effect of childhood body size on various other MRI-based measures, such as fat percentage in the liver (Beta = 0.14, 95% CI = 0.05 to 0.23, P = 0.002) and pancreas (Beta = 0.21, 95% CI = 0.10 to 0.33, P = 3.9 × 10-4), attenuated upon accounting for adult body size. Our findings suggest that childhood body size has a long-term (and potentially immutable) influence on heart structure in later life. In contrast, effects of childhood body size on other measures of adulthood organ size and fat percentage evaluated in this study are likely explained by the long-term consequence of remaining overweight throughout the lifecourse

    A lifecourse mendelian randomization study highlights the long-term influence of childhood body size on later life heart structure

    Get PDF
    Children with obesity typically have larger left ventricular heart dimensions during adulthood. However, whether this is due to a persistent effect of adiposity extending into adulthood is challenging to disentangle due to confounding factors throughout the lifecourse. We conducted a multivariable mendelian randomization (MR) study to separate the independent effects of childhood and adult body size on 4 magnetic resonance imaging (MRI) measures of heart structure and function in the UK Biobank (UKB) study. Strong evidence of a genetically predicted effect of childhood body size on all measures of adulthood heart structure was identified, which remained robust upon accounting for adult body size using a multivariable MR framework (e.g., left ventricular end-diastolic volume (LVEDV), Beta = 0.33, 95% confidence interval (CI) = 0.23 to 0.43, P = 4.6 × 10-10). Sensitivity analyses did not suggest that other lifecourse measures of body composition were responsible for these effects. Conversely, evidence of a genetically predicted effect of childhood body size on various other MRI-based measures, such as fat percentage in the liver (Beta = 0.14, 95% CI = 0.05 to 0.23, P = 0.002) and pancreas (Beta = 0.21, 95% CI = 0.10 to 0.33, P = 3.9 × 10-4), attenuated upon accounting for adult body size. Our findings suggest that childhood body size has a long-term (and potentially immutable) influence on heart structure in later life. In contrast, effects of childhood body size on other measures of adulthood organ size and fat percentage evaluated in this study are likely explained by the long-term consequence of remaining overweight throughout the lifecourse.</p

    Measurement of R(D) and R(D∗) with a semileptonic tagging method

    Get PDF
    The experimental results on the ratios of branching fractions R(D) = B(B¯ → Dτ − ν¯τ )/B(B¯ → D`− ν¯`) and R(D ∗ ) = B(B¯ → D ∗ τ − ν¯τ )/B(B¯ → D ∗ ` − ν¯`), where ` denotes an electron or a muon, show a long-standing discrepancy with the Standard Model predictions, and might hint to a violation of lepton flavor universality. We report a new simultaneous measurement of R(D) and R(D ∗ ), based on a data sample containing 772 × 106 BB¯ events recorded at the Υ(4S) resonance with the Belle detector at the KEKB e + e − collider. In this analysis the tag-side B meson is reconstructed in a semileptonic decay mode and the signal-side τ is reconstructed in a purely leptonic decay. The measured values are R(D) = 0.307 ± 0.037 ± 0.016 and R(D ∗ ) = 0.283 ± 0.018 ± 0.014, where the first uncertainties are statistical and the second are systematic. These results are in agreement with the Standard Model predictions within 0.2, 1.1 and 0.8 standard deviations for R(D), R(D ∗ ) and their combination, respectively. This work constitutes the most precise measurements of R(D) and R(D ∗ ) performed to date as well as the first result for R(D) based on a semileptonic tagging method

    An improved set of electron-THFA cross sections refined through a neural network-based analysis of swarm data

    Get PDF
    We review experimental and theoretical cross sections for electron transport in α-tetrahydrofurfuryl alcohol (THFA) and, in doing so, propose a plausible complete set. To assess the accuracy and self-consistency of our proposed set, we use the pulsed-Townsend technique to measure drift velocities, longitudinal diffusion coefficients, and effective Townsend first ionization coefficients for electron swarms in admixtures of THFA in argon, across a range of density-reduced electric fields from 1 to 450 Td. These measurements are then compared to simulated values derived from our proposed set using a multi-term solution of Boltzmann’s equation. We observe discrepancies between the simulation and experiment, which we attempt to address by employing a neural network model that is trained to solve the inverse swarm problem of unfolding the cross sections underpinning our experimental swarm measurements. What results from our neural network-based analysis is a refined set of electron-THFA cross sections, which we confirm is of higher consistency with our swarm measurements than that which we initially proposed. We also use our database to calculate electron transport coefficients in pure THFA across a range of reduced electric fields from 0.001 to 10000 Td

    APOE-ε4 Shapes the Cerebral Organization in Cognitively Intact Individuals as Reflected by Structural Gray Matter Networks

    Get PDF
    Gray matter networks (GMn) provide essential information on the intrinsic organization of the brain and appear to be disrupted in Alzheimer’s disease (AD). Apolipoprotein E (APOE)-ε4 represents the major genetic risk factor for AD, yet the association between APOE-ε4 and GMn has remained unexplored. Here, we determine the impact of APOE-ε4 on GMn in a large sample of cognitively unimpaired individuals, which was enriched for the genetic risk of AD. We used independent component analysis to retrieve sources of structural covariance and analyzed APOE group differences within and between networks. Analyses were repeated in a subsample of amyloid-negative subjects. Compared with noncarriers and heterozygotes, APOE-ε4 homozygotes showed increased covariance in one network including primarily right-lateralized, parietal, inferior frontal, as well as inferior and middle temporal regions, which mirrored the formerly described AD-signature. This result was confirmed in a subsample of amyloid-negative individuals. APOE-ε4 carriers showed reduced covariance between two networks encompassing frontal and temporal regions, which constitute preferential target of amyloid deposition. Our data indicate that, in asymptomatic individuals, APOE-ε4 shapes the cerebral organization in a way that recapitulates focal morphometric alterations observed in AD patients, even in absence of amyloid pathology. This suggests that structural vulnerability in neuronal networks associated with APOE-ε4 may be an early event in AD pathogenesis, possibly upstream of amyloid deposition

    Measurement of R (D) and R (D∗) with a Semileptonic Tagging Method

    Get PDF
    The experimental results on the ratios of branching fractions R(D)=B(B→Dτ-ντ)/B(B→Dℓ-νℓ) and R(D∗)=B(B→D∗τ-ντ)/B(B→D∗ℓ-νℓ), where ℓ denotes an electron or a muon, show a long-standing discrepancy with the standard model predictions, and might hint at a violation of lepton flavor universality. We report a new simultaneous measurement of R(D) and R(D∗), based on a data sample containing 772×106 BB events recorded at the ϒ(4S) resonance with the Belle detector at the KEKB e+e- collider. In this analysis the tag-side B meson is reconstructed in a semileptonic decay mode and the signal-side τ is reconstructed in a purely leptonic decay. The measured values are R(D)=0.307±0.037±0.016 and R(D∗)=0.283±0.018±0.014, where the first uncertainties are statistical and the second are systematic. These results are in agreement with the standard model predictions within 0.2, 1.1, and 0.8 standard deviations for R(D), R(D∗), and their combination, respectively. This work constitutes the most precise measurements of R(D) and R(D∗) performed to date as well as the first result for R(D) based on a semileptonic tagging method

    Averages of bb-hadron, cc-hadron, and τ\tau-lepton properties as of summer 2014

    Full text link
    This article reports world averages of measurements of bb-hadron, cc-hadron, and τ\tau-lepton properties obtained by the Heavy Flavor Averaging Group (HFAG) using results available through summer 2014. For the averaging, common input parameters used in the various analyses are adjusted (rescaled) to common values, and known correlations are taken into account. The averages include branching fractions, lifetimes, neutral meson mixing parameters, CPCP violation parameters, parameters of semileptonic decays and CKM matrix elements.Comment: 436 pages, many figures and tables. Online updates available at http://www.slac.stanford.edu/xorg/hfag
    corecore