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Abstract

Children with obesity typically have larger left ventricular heart dimensions during adulthood.

However, whether this is due to a persistent effect of adiposity extending into adulthood is chal-

lenging to disentangle due to confounding factors throughout the lifecourse. We conducted a

multivariable mendelian randomization (MR) study to separate the independent effects of child-

hood and adult body size on 4 magnetic resonance imaging (MRI) measures of heart structure

and function in the UK Biobank (UKB) study. Strong evidence of a genetically predicted effect

of childhood body size on all measures of adulthood heart structure was identified, which

remained robust upon accounting for adult body size using a multivariable MR framework (e.g.,

left ventricular end-diastolic volume (LVEDV), Beta = 0.33, 95% confidence interval (CI) = 0.23

to 0.43, P = 4.6 × 10−10). Sensitivity analyses did not suggest that other lifecourse measures of

body composition were responsible for these effects. Conversely, evidence of a genetically pre-

dicted effect of childhood body size on various other MRI-based measures, such as fat percent-

age in the liver (Beta = 0.14, 95% CI = 0.05 to 0.23, P = 0.002) and pancreas (Beta = 0.21,

95% CI = 0.10 to 0.33, P = 3.9 × 10−4), attenuated upon accounting for adult body size. Our

findings suggest that childhood body size has a long-term (and potentially immutable) influence

on heart structure in later life. In contrast, effects of childhood body size on other measures of

adulthood organ size and fat percentage evaluated in this study are likely explained by the

long-term consequence of remaining overweight throughout the lifecourse.

Introduction

The prevalence of childhood obesity has increased rapidly in the last 50 years, and it is now a

major public health concern worldwide [1]. Research suggests that childhood obesity has serious
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long-term health consequences including increased risk of cardiovascular disease in adulthood

[2–4]. This has prompted efforts into understanding the effects of childhood obesity on cardiac

structure and function in later life, with previous studies noting an association between childhood

adiposity and both left ventricular remodeling and left ventricular mass in adulthood [5–9].

However, evidence of an association between childhood obesity and altered cardiac mor-

phology comes from observational studies, which are prone to confounding and reverse causa-

tion. This is the motivation behind an approach known as mendelian randomization (MR), a

form of instrumental variable analysis that harnesses genetic variants randomly allocated at

birth to investigate evidence of a causal effect between modifiable lifestyle risk factors on com-

plex traits and disease outcomes [10,11]. Therefore, as long as the assumptions of MR hold, dif-

ferences in an outcome between carriers of specific genetic variants and noncarriers can be

attributed to the environmental risk factors they predict.

Multivariable MR is an extension of the conventional MR approach that simultaneously

estimates the genetically predicted effects of multiple risk factors on an outcome [12,13]. This

approach can help separate the “direct” and “indirect” effects of a risk factor on an outcome

(Fig 1). Recently, we derived sets of genetic variants to separate the genetically predicted effects

of childhood and adult body size using multivariable MR in a lifecourse context [14]. These

scores have already been validated to separate measured childhood and adult body mass index

(BMI) [15,16] and have also been leveraged to provide evidence that childhood body size has a

direct influence on outcomes such as type 1 diabetes [17] (Fig 1B). In contrast, these scores

have provided evidence of an indirect effect on outcomes such as atherosclerosis and heart fail-

ure [18] (Fig 1C), suggesting that the association between childhood adiposity and these out-

comes is likely attributed to individuals remaining overweight into adulthood. However, this

approach has not yet been applied to evaluate the effect of childhood body size on cardiac

structure and function in later life, which is vital in terms of understanding the long-term con-

sequences of this early life exposure on the cardiovascular system.

In this study, we applied univariable and multivariable MR to investigate whether geneti-

cally predicted childhood body size has a direct effect on magnetic resonance imaging (MRI)

assessed measures of cardiac structure and function in adulthood independent of adult body

size. Although genetic instruments for childhood body size were derived as a surrogate mea-

sure of adiposity, we investigated this using various sensitivity analyses to evaluate whether

they could be explained by other lifecourse measures of body composition. We next applied

univariable and multivariable MR to other MRI-derived measures of abdominal organs mea-

sured during adulthood, involving the size and fat percentage of the liver, pancreas, and kid-

ney, as well as volumes of subcutaneous adipose tissue (SAT) and visceral adipose tissue

(VAT). These abdominal traits were analyzed for comparative purposes, given that we antici-

pated there to be weak evidence of an effect of childhood body size on them upon accounting

for the effect of adult body size. Last, we analyzed cardiomyopathy endpoints using this

approach to discern whether putative effects responsible for left ventricular cardiac remodeling

may have downstream implications on this disease outcome.

Results

Investigating the direct and indirect effects of childhood body size on

cardiac structure and function in later life

An overview of the datasets analyzed in this study and their study characteristics can be found

in S1 and S2 Tables, respectively. Univariable MR analyses using the inverse variance

weighted (IVW) approach provided strong evidence that childhood body size has a total effect

on left ventricular end-diastolic volume (LVEDV) (Beta = 0.36 SD change per change in body
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Fig 1. DAGs illustrating the different scenarios through which childhood body size may influence cardiac

structure in later life. Fig 1A illustrates the “total” effect of childhood body size on cardiac structure in adulthood.

This may be due to a “direct” effect of childhood body size, which is depicted in Fig 1B or an “indirect” effect,

mediated through adult body size, which is depicted in Fig 1C. DAG, directed acyclic graph.

https://doi.org/10.1371/journal.pbio.3001656.g001
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size category, 95% confidence interval (CI) = 0.28 to 0.44, P = 1 × 10−18), left ventricular end-

systolic volume (LVESV) (Beta = 0.29, 95% CI = 0.21 to 0.36, P = 3 × 10−13), and stroke volume

(SV) (Beta = 0.36, 95% CI = 0.28 to 0.45, P = 1 × 10−16). However, there was weak evidence of

an effect on left ventricular ejection fraction (LVEF) (Beta = −0.10, 95% CI = −0.18 to −0.02,

P = 0.016) after accounting for multiple testing corrections across all MRI-based measures in

this study (P< 0.0045). Similar results were observed for adult body size in the univariable

analysis, although effect estimates were typically smaller in magnitude (S3 Table). In addition,

childhood body size estimates on measures of heart structure were supported by the weighted

median and MR–Egger methods suggesting that our results were robust to horizontal pleiot-

ropy, whereas weak evidence was identified on LVEF when using these approaches (S3 Table).

Multivariable MR analyses provided strong evidence of a direct effect of childhood body

size on cardiac measures in adulthood (S4 Table) as effect estimates for LVESV (Beta = 0.29,

95% CI = 0.19 to 0.40, P = 8 × 10−8), LVEDV (Beta = 0.33, 95% CI = 0.23 to 0.43,

P = 5 × 10−10), and SV (Beta = 0.31, 95% CI = 0.20 to 0.41, P = 1 × 10−8) remained robust upon

accounting for adult body size. Furthermore, multivariable estimates provided little evidence

for a direct effect of adult body size independent of childhood body size on cardiac structure

when analyzed in the multivariable framework along with childhood body size (S4 Table).

Forest plots for both the univariable and multivariable MR results on measures of cardiac

structure and function can be found in Fig 2.

Validation analyses conducted in the ALSPAC cohort supported a direct effect of childhood

body size on measures of cardiac structure at mean age 17.8 years in the lifecourse (S5 Table).

In the multivariable MR analyses, childhood body size provided strong evidence of an effect on

LVEDV (Beta = 1.65ml per change in body size category, 95% CI = 0.50 to 2.80, P = 0.005),

LVESV (Beta = 0.75ml, 95% CI = 0.11 to 1.38, P = 0.022) and SV (Beta = 0.89ml, 95% CI = 0.19

to 1.59, P = 0.013). Weak evidence of an effect of childhood body size was found when analysing

LVEF (Beta = −0.07, 95% CI = −0.42 to 0.29, P = 0.715) as found in our primary analysis.

Evaluating the direct and indirect effects between childhood body size and

abdominal organ size in adulthood

We then applied the same approach to MRI measures of abdominal organs in adulthood for com-

parison. Univariable MR provided evidence of an effect of child and adult body size on all measures

of abdominal organ size and fat percentage with the exception of pancreatic volume (S6 Table).

For example, there was strong evidence of a total effect of childhood body size on kidney volume

(Beta = 0.36, 95% CI = 0.27 to 0.46, P = 1 × 10−13), liver volume (Beta = 0.41, 95% CI = 0.32 to 0.51,

P = 5 × 10−17), pancreatic fat percentage (Beta = 0.21, 95% CI = 0.10 to 0.33, P = 3 × 10−4), and

liver fat percentage (Beta = 0.14, 95% CI = 0.05 to 0.23, P = 0.002) using the IVW method. How-

ever, the evidence of an effect for child body size drastically attenuated in the multivariable MR

analysis accounting for adult body size (with the direction of effect for childhood body size even

reversing in some instances). This suggests that child body size acts indirectly through adult body

size on abdominal organ size and fat percentage in later life (S7 Table). In addition, there was also

strong evidence of a direct effect of adult body size on SAT (Beta = 0.97, 95% CI = 0.87 to 1.07,

P = 6 × 10−84) and VAT volume (Beta = 0.80, 95% CI = 0.71 to 0.90, P = 1 × 10−62). All univariable

and multivariable MR estimates on abdominal traits are shown in Fig 2.

Incorporating the genetically predicted effects of other measures of

lifecourse body composition on cardiac structure

Repeating multivariable MR analyses for childhood body size while accounting for adult fat-

free mass index (FFMI) in the model continued to provide evidence of a direct effect of
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childhood body size on cardiac structure and function in later life (S8 and S9 Tables). Like-

wise, strong evidence of a genetically predicted effect of childhood body size on measures of

cardiac structure was found upon accounting for birth weight using multivariable MR (S10

and S11 Tables). Forest plots for the univariable and multivariable MR analyses accounting

for FFMI and birth weight can be found in S1 and S2 Figs, respectively.

Repeating MR analyses using childhood and adult height as our exposures provided strong

evidence on all 4 MRI-assessed measures of cardiac structure and function (S12 Table). For

example, we observed evidence of an effect of height using the IVW method at both the child-

hood (Beta per change in height category = −0.26, 95% CI = −0.31 to −0.21, P = 1 × 10−25) and

adult time points (Beta = −0.31, 95% CI = −0.36 to −0.26, P = 1 × 10−34) on LVEF. However, in

contrast to our findings for childhood body size, multivariable MR found that evidence of an

effect for childhood height on LVEF attenuated drastically and upon accounting for adult

height (Beta = −0.05, 95% CI = −0.19 to 0.10, P = 0.53). This suggests that childhood height

exerts its effect on LVEF indirectly via the causal pathway involving adult height, but also that

Fig 2. Forest plots illustrating (A) univariable and (B) multivariable MR effect estimates of childhood and adult body size on measures of cardiac

structure/function and abdominal organ size/fat percentage. The estimates for child body size are in orange and the estimates for adult body size are in red.

The effect estimates are per change in body size category and include the 95% CI. The data underlying this figure can be found in S3, S4, S6, and S7 Tables. CI,

confidence interval; LV, left ventricular; MR, mendelian randomization; MRI, magnetic resonance imaging; SAT, subcutaneous adipose tissue; VAT, visceral

adiposity tissue.

https://doi.org/10.1371/journal.pbio.3001656.g002
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our findings for childhood body size may be more likely to be due to higher adiposity as

opposed to simply being larger during childhood. Evidence on measures of cardiac structure

also typically attenuated for childhood height in comparison to adult height (S13 Table). For-

ests plots of the MR results for childhood and adult height are depicted in S3 Fig. Finally, evi-

dence of an effect of childhood body size on measures of cardiac structure remained strong in

the multivariable model accounting for the effect of childhood height (S14 Table).

Weak evidence that childhood body size directly influences risk of

cardiomyopathies in adulthood

Despite strong evidence of an effect on cardiac structure provided by previous analyses, under-

taking the same analytical approach on cardiomyopathy endpoints provided weak evidence

that childhood body size has a direct effect on these disease outcomes (S15 and S16 Tables).

For example, the total effect of childhood body size found in univariable MR analyses of nonis-

chemic cardiomyopathy (odds ratio (OR) = 1.74 per change in body size category, 95%

CI = 1.20 to 2.53, P = 0.004) attenuated to include the null in the multivariable MR analyses

accounting for adult body size (OR = 1.09, 95% CI = 0.64 to 1.84, P = 0.753).

Discussion

In this study, we provide evidence that childhood body size directly influences cardiac struc-

ture in later life independent of adult body size. Furthermore, our effect estimates remained

robust even after accounting for genetically predicted lean mass and birth weight, further sup-

porting the hypothesis that childhood body size has an independent effect on cardiac structure.

In contrast, there was weak evidence of an effect of childhood body size on LVEF, consistent

with findings from the literature suggesting that obesity may influence cardiac remodeling

[19]. Additionally, as anticipated evidence of a genetically predicted effect of childhood body

size on adult measures of abdominal organ size and fat percentage attenuated after accounting

for body size during adulthood. These results suggest that the total effect of childhood body

size is likely attributed to the long-term consequence of remaining overweight throughout the

lifecourse and into adulthood. Likewise, although childhood body size increased the risk of

cardiomyopathy there was no convincing evidence that this is due to a direct effect (i.e., inde-

pendently of adult body size).

Previous studies have used cardiac MRI to investigate the effect of childhood adiposity on

cardiac structure and function during childhood [20,21]. They report evidence of an associa-

tion between childhood adiposity and increased left ventricular mass and cardiac remodeling.

Findings from our study provides evidence using genetic instrumental variables that these

reported associations may be due to a direct effect of childhood body size on cardiac structure.

One potential mechanism that has been postulated for this finding is higher levels of adipose

tissue in early life increasing circulating blood volume and cardiac output [22,23]. These

hemodynamic changes in combination with other metabolic and neurohormonal alterations

are thought to drive changes in cardiac morphology [24,25]. Another proposed mechanism

that this finding may be attributed is increased early life body size resulting in a persistent

change in myocardial energetics [26]. Cardiac remodeling can be a normal physiological pro-

cess; however, it has also been reported to potentially become irreversible [27,28]. We note,

however, that, although our findings highlight the importance of body size during early life as

a determinant of cardiac structure in adulthood, further research is required to pinpoint the

critical windows during the lifecourse when the consequence of this effect may become

immutable.
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The genetically predicted effects of childhood body size on cardiac remodeling observed in

our study also required further investigation into whether they may lead to pathological conse-

quences and if this translates into an increased risk of cardiovascular disease. The current liter-

ature suggests that childhood adiposity influences cardiometabolic disease risk only if the

levels remain consistently high into adulthood [29]. Of particular note is a recent MR study

which found that the effect estimates for childhood body size and 8 cardiovascular disease end-

points attenuated (and in some cases even reversed direction of effect) when accounting for

adult body size [18]. We also build on these findings in this study, as evidence that childhood

body size increases risk of nonischaemic cardiomyopathy from our univariable analyses did

not remain robust to the inclusion of adult body size in the multivariable model. These find-

ings suggest that individuals who are larger in early life are likely at higher risk of nonischae-

mic cardiomyopathy in later life due to a sustained and long-term effect of adiposity for many

years across the lifecourse. However, this research question would be worthwhile revisiting

once larger number of cases for cardiomyopathy endpoints are available [30]. Moreover, inves-

tigations into the consequences of body size at other time points in the lifecourse would be

worthwhile, particularly given that previous observational analyses suggest that adiposity in

late adolescence (mean age 18.3 years) may contribute to being diagnosed with cardiomyopa-

thy in adulthood [31]. We also assessed effects on left ventricular function in this study using

left ventricular ejection fraction, although alternate measures may be worthwhile investigating

once larger sample sizes are available [32].

We additionally incorporated genetic instruments for FFMI, birth weight, and height (dur-

ing both childhood and adulthood) into our multivariable MR framework to investigate

whether these might explain the genetically predicted effect found between childhood body

size and measures of cardiac structure. Although previous studies have indicated that cardiac

structure is more strongly influenced by lean mass than fat mass, our effect estimates remained

robust when accounting for FFMI in adulthood [33]. In addition, the effect estimates for

LVESV, LVEDV, and SV did not attenuate when birth weight was incorporated into the multi-

variable model. These results support the hypothesis that childhood body size has an effect on

adult cardiac structure independent of birth weight used as a proxy in this study for body size

during the very early stages in the lifecourse. However, future research that incorporates both

parental and fetal genotypes into the study design would be more appropriate to fully evaluate

the genetically predicted effect of birth weight itself on MRI-derived traits such as cardiac

structure [34,35]. Furthermore, the genetically predicted effect of childhood height on cardiac

structure did not remain robust after accounting for height during adulthood. Taken together,

the evidence of a genetically predicted effect of childhood body size on cardiac structure found

in this study may be driven by adiposity rather than these alternate aspects of body composi-

tion, although confirmatory evidence from further research is required to support this.

It is important to note that this study has limitations. First, to gain a large number of reliable

instrumental variables for childhood body size, we harnessed recall data [36]. However, as

mentioned in the methods section, these genetic variants have been validated in 3 separate

studies and have even been found to be a better predictor of BMI across multiple time points

in childhood compared to the genetic score from derived from the largest genome-wide associ-

ation study (GWAS) of measured childhood BMI to date [37]. Furthermore, although the UK

Biobank is by far the largest study to date with MRI measures of cardiac structure and func-

tion, the subsample of participants who attended the MRI imaging study have been reported

to have a “healthy bias” [38], and these individuals were removed from our GWAS analyses

required for instrument derivation. However, this was necessary to prevent overlap between

our exposures and outcomes that may induce overfitting into MR analyses and lead estimates

away from the null [39].
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In conclusion, our findings suggest that childhood body size has a direct and potentially

immutable effect on cardiac structure in later life. This is in contrast to results for abdominal

organ size and fat percentage, where associations with childhood obesity are likely explained

by a persistent effect of adiposity throughout the lifecourse into adulthood. Further research is

needed to determine whether early life changes in cardiac morphology caused by childhood

body size have pathological consequences.

Materials and methods

Data resources

Genetic instruments for childhood and adult body size. We previously conducted

GWASs in the UKB study on measures of childhood and adult body size. Details of these anal-

yses have been reported elsewhere [14]. In brief, the childhood body size measure in UKB was

derived using recall questionnaire data asking participants if they were “thinner,” “plumper,”

or “about average” when they were aged 10 years old compared to the average (field #1687).

Adult measured BMI (field #21001) data (mean age 56.5 years) was then transformed into a

3-tier variable using the same proportions as the childhood measure for comparative purposes.

Genetic instruments derived from these GWASs have been previously validated using mea-

sured BMI data from 3 independent populations; the Avon Longitudinal Study of Parents and

Children (ALSPAC) [14], the Trøndelag Health (HUNT) study [15], and the Cardiovascular

Risk in Young Finns Study [16]. Furthermore, genetic correlation analyses demonstrate that

the childhood body size GWAS is much more highly correlated with measured childhood obe-

sity from an independent sample (rG = 0.85) compared to the adult measure (rG = 0.67). In

contrast, results from the adult body size GWAS have been shown to be much more strongly

correlated with measured BMI in adulthood (rG = 0.96) compared to the childhood measure

(rG = 0.64). Conditional F-statistics generated for childhood (F = 13.6) and adult (F = 16.0)

body size instruments suggested that weak instrument bias was unlikely for these sets of

genetic variants.

In the current study, we repeated these GWASs in UKB excluding participants who

attended UKB assessment centers for MRI data collection. As these MRI measures were ana-

lyzed as outcomes in this study, this allowed us to partition UKB into 2 independent samples,

meaning there was no sample overlap between our exposures and outcomes which may lead to

overfitting in MR analyses [39,40]. GWASs were conducted on n = 407,741 participants with

both measures adjusting for age, sex, and genotyping chip, with the childhood body size

GWAS additionally adjusted for month of birth. To account for genetic relatedness and geo-

graphical structure in UKB, we applied a linear mixed model using the BOLT-LMM software

to perform GWAS [41]. Genetic instruments from GWASs were selected based on variants

that met the criteria of P< 5 × 10−8 and r2 < 0.001 using a reference panel of n = 10,000 ran-

domly selected unrelated European participants from UKB [42].

Genetic instruments for other measures of lifecourse body composition. Although the

childhood body size measure in UKB aims to capture a surrogate measure of adiposity at age

10 (i.e., whether an individual was “thinner,” “plumper,” or “about average”), we sought to

assess this by accounting for other measures of body composition at different stages in the life-

course. Specifically, we sought to investigate whether childhood height, birth weight or fat-free

mass index (FFMI) may be responsible for findings using the childhood body size instruments

rather than adiposity at age 10. The same protocol described above was therefore repeated to

identify genetic instruments in the UKB study for childhood height (field #1697), adult height

(field #50), birth weight (field #20022), and FFMI (field #23101 divided by field #50 squared).

Childhood and adult height measures were categorized in the same manner as their body size
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counterparts, whereas birth weight was kept as a continuous trait to maximize sample sizes in

analyses. All GWASs were adjusted for age, sex, and genotyping chip, with the exception of

childhood height, which was additionally adjusted for month of birth.

Genetic effect estimates on MRI-assessed measures of cardiac structure and function.

Genome-wide genetic variant effects on measures of cardiac structure and function were

obtained from a previous GWAS of cardiac MRI-derived left ventricular measurements in

36,041 UKB participants who attended follow-up clinics [30]. These measures were LVEDV,

LVESV, SV and LVEF. GWASs were undertaken using BOLT-LMM with adjustment for age,

sex, year of birth, and MRI scanner’s unique identifiers. Estimates from these GWASs were

unadjusted for BMI and height, which is why they were selected over others available.

Genetic effect estimates on MRI-assessed measures of abdominal organs. We addition-

ally obtained genome-wide estimates on 5 measures of abdominal organ traits [43]. These

were liver volume, liver fat percentage, pancreas volume, pancreas fat percentage, and kidney

volume. As a further analysis, we also extracted estimated on SAT and VAT volume. These

GWASs were conducted using BOLT-LMM with adjustment for age, age2, sex, imagine center,

scan date, scan time, and genotyping batch.

Genome-wide association studies of cardiomyopathy endpoints. We obtained genome-

wide results from a previously conducted GWAS of 1,816 cases of nonischemic cardiomyopa-

thy and 388,326 controls from the UKB study. Details of this GWAS have been described pre-

viously [44]. In brief, cases were defined as patients with reported hospitalization or death due

to dilated cardiomyopathy or left ventricular failure (defined as ICD10 codes I420, I421, I422,

I501, or ICD9 code 4281) and an absence of CAD (defined based on ICD9 and ICD10 codes

reported in S1 Table). Additionally, we applied our BOLT-LMM GWAS pipeline described

above to derived genetic estimates on dilated and hypertrophic cardiomyopathy separately

(based on ICD10 codes I420 and I421/I422, respectively) with adjustment for age and sex. An

overview of all the GWAS datasets analyzed in this study can be found in S1 Table. Character-

istics of these datasets can be found in S2 Table.

Early life measures of cardiac structure from the Avon Longitudinal Study of Parents

and Children. ALSPAC is a population-based cohort investigating genetic and environmen-

tal factors that affect the health and development of children. The study methods are described

in detail elsewhere [45,46]. In brief, 14,541 pregnant women residents in the former region of

Avon, UK, with an expected delivery date between April 1, 1991 and December 31, 1992, were

eligible to take part in ALSPAC. Detailed phenotypic information, biological samples, and

genetic data, which have been collected from the ALSPAC participants, are available through a

searchable data dictionary (http://www.bris.ac.uk/alspac/researchers/our-data). Written

informed consent was obtained for all study participants. Ethical approval for this study was

obtained from the ALSPAC Ethics and Law Committee and the Local Research Ethics

Committees.

We obtained data from ALSPAC participants enrolled in the Growth Related effects in

ALSPAC on Cardiac Endpoints (GRACE) substudy [47]. At mean age = 17.8 years

(range = 16.3 to 20 years), participants underwent an echocardiogram test that obtained mea-

sures of left ventricular structure and function. These measures were then analyzed using lin-

ear regression with weighted genetic risk scores for childhood and adult body size both

individually and together in the same model with adjustment for age and sex.

Statistical analysis

Univariable mendelian randomization. First, we conducted 2-sample univariable MR to

investigate the total effect of genetically predicted childhood body size on each of the MRI-
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derived outcomes in turn. This was estimated using the IVW method [48] for initial analyses

followed by the weighted median [49] and MR–Egger [50] methods as sensitivity analyses.

This was to evaluate the robustness of our IVW estimates to horizontal pleiotropy, which is the

phenomenon whereby genetic variants exert their effects on exposure and outcome via 2 sepa-

rate biological pathways [51]. All univariable analyses were repeated for adult body size as well

as all other exposures investigated in this study. F-statistics were derived for each set of instru-

ments to assess whether findings may be prone to weak instrument bias.

Multivariable mendelian randomization. We next investigated the direct and indirect

effect of childhood body size on each of the MRI-derived outcomes using 2-sample multivari-

able MR [12,13]. This involved including adult body size in our model along with childhood

body size to simultaneously estimate their genetically predicted effects on each outcome in

turn. This analysis was then repeated using the genetic instruments for childhood and adult

height, allowing us to investigate whether results for body size were likely due to adiposity

rather than simply being larger in childhood.

Further sensitivity analyses were also conducted estimating the direct effect of childhood

body size using multivariable MR while accounting for both FFMI and birth weight. As

described previously, we accounted for birth weight in this study to investigate whether an

individual’s body size in very early life (for example before age 5 in the lifecourse) may be

responsible for the results identified using our childhood body size genetic instruments [17].

The focus of this study was on childhood body size at age 10 in the lifecourse, and as such,

investigating the relationship between birth weight and cardiac structure was outside its scope.

Furthermore, an appropriate study design for this research question would require an assess-

ment of the effect of parental genotypes, which we did not have access to in UKB [34,35].

All MR analyses were undertaken in R (version 3.5.1) using the “TwoSampleMR” package

[52]. Forest plots in this paper were generated using the R package “ggplot2” [53].

Supporting information

S1 Fig. Forest plots illustrating (A) univariable and (B) multivariable MR effect estimates of

childhood body size BMI and FFMI on measures of cardiac structure and function. The data

underlying this figure can be found in S8 and S9 Tables. BMI, body mass index; FFMI, fat-free

mass index; LV, left ventricular; MR, mendelian randomization; MRI, magnetic resonance

imaging.

(PNG)

S2 Fig. Forest plots illustrating (A) univariable and (B) multivariable MR effect estimates of

childhood body size BMI and BW on measures of cardiac structure and function. The data

underlying this figure can be found in S10 and S11 Tables. BMI, body mass index; BW, birth

weight; LV, left ventricular; MR, mendelian randomization; MRI, magnetic resonance imag-

ing.

(PNG)

S3 Fig. Forest plots illustrating (A) univariable and (B) multivariable MR effect estimates of

childhood and adult height on measures of cardiac structure and function. The data underly-

ing this figure can be found in S12 and S13 Tables. LV, left ventricular; MR, mendelian ran-

domization; MRI, magnetic resonance imaging.

(PNG)

S1 Table. Overview of the datasets analyzed in this study.

(XLSX)
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S2 Table. Characteristics for the exposures and outcomes analyzed in this study.

(XLSX)

S3 Table. Univariable MR analyses for childhood and adult body size on heart structure

measures. MR, mendelian randomization.

(XLSX)

S4 Table. Univariable and multivariable MR analyses for childhood and adult body size on

heart structure measures. MR, mendelian randomization.

(XLSX)

S5 Table. Validation univariable and multivariable MR analyses for childhood and adult

body size in the ALSPAC cohort on heart structure measures. ALSPAC, Avon Longitudinal

Study of Parents and Children; MR, mendelian randomization.

(XLSX)

S6 Table. Univariable MR analyses for childhood and adult body size on abdominal mea-

sures. MR, mendelian randomization.

(XLSX)

S7 Table. Univariable and multivariable MR analyses for childhood and adult body size on

abdominal measures. MR, mendelian randomization.

(XLSX)

S8 Table. Univariable MR analyses for childhood body size and FFMI on heart structure

measures. FFMI, fat-free mass index; MR, mendelian randomization.

(XLSX)

S9 Table. Univariable and multivariable MR analyses for childhood body size and FFMI on

heart structure measures. FFMI, fat-free mass index; MR, mendelian randomization.

(XLSX)

S10 Table. Univariable MR analyses for childhood body size and BW on heart structure

measures. BW, birth weight; MR, mendelian randomization.

(XLSX)

S11 Table. Univariable and multivariable MR analyses for childhood and BW on heart

structure measures. BW, birth weight; MR, mendelian randomization.

(XLSX)

S12 Table. Univariable MR analyses for childhood and adult height on heart structure

measures. MR, mendelian randomization.

(XLSX)

S13 Table. Univariable and multivariable MR analyses for childhood and adult height on

heart structure measures. MR, mendelian randomization.

(XLSX)

S14 Table. Univariable and multivariable MR analyses for childhood body size and child-

hood height on heart structure measures. MR, mendelian randomization.

(XLSX)

S15 Table. Univariable MR analyses for childhood and adult body size on risk of cardiomy-

opathy outcomes. MR, mendelian randomization.

(XLSX)
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S16 Table. Univariable and multivariable MR analyses for childhood and adult body size

on risk of cardiomyopathy outcomes. MR, mendelian randomization.

(XLSX)
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