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Abstract

Gray matter networks (GMn) provide essential information on the intrinsic organization of the brain and appear to be

disrupted in Alzheimer’s disease (AD). Apolipoprotein E (APOE)-ε4 represents the major genetic risk factor for AD, yet the

association between APOE-ε4 and GMn has remained unexplored. Here, we determine the impact of APOE-ε4 on GMn in a

large sample of cognitively unimpaired individuals, which was enriched for the genetic risk of AD. We used independent

component analysis to retrieve sources of structural covariance and analyzed APOE group differences within and between

networks. Analyses were repeated in a subsample of amyloid-negative subjects. Compared with noncarriers and

heterozygotes, APOE-ε4 homozygotes showed increased covariance in one network including primarily right-lateralized,

parietal, inferior frontal, as well as inferior and middle temporal regions, which mirrored the formerly described

AD-signature. This result was confirmed in a subsample of amyloid-negative individuals. APOE-ε4 carriers showed reduced

covariance between two networks encompassing frontal and temporal regions, which constitute preferential target of

amyloid deposition. Our data indicate that, in asymptomatic individuals, APOE-ε4 shapes the cerebral organization in a way

that recapitulates focal morphometric alterations observed in AD patients, even in absence of amyloid pathology. This
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suggests that structural vulnerability in neuronal networks associated with APOE-ε4 may be an early event in AD

pathogenesis, possibly upstream of amyloid deposition.

Key words: Alzheimer’s disease, APOE, gray matter networks, independent component analysis, processing speed

Introduction

Alzheimer’s disease (AD) is characterized by a distinctive pattern

of brain atrophy along with progressive decline in multiple cog-

nitive domains (Braskie and Thompson, 2013). Core pathological

hallmarks of AD are cerebral extracellular deposition of beta-

amyloid (Aβ) fibrils and intraneuronal aggregation of hyper-

phosphorylated tau protein (Frisoni et al., 2017). Abnormally low

cerebral glucose metabolism, as assessed with 2-[18F]fluoro-2-

deoxy-D-glucose (FDG) positron emission tomography (PET), is

also present across several regions including temporo-parietal

and posterior cingulate cortices (Alexander et al., 2002; Mosconi,

2013). Yet, preclinical signatures of the disease in asymptomatic

individuals are already evident at least two decades prior to

cognitive impairment, opening a temporal window, which is

critical to delay the onset of dementia (Sperling et al., 2011).

The preclinical course of AD is influenced by multiple genetic

markers (Escott-Price et al., 2015; Tan et al., 2017). Among those,

apolipoprotein E (APOE)-ε4 represents the greatest genetic risk

factor for AD, by lowering the age of onset in a dose-dependent

manner (Corder et al., 1993; Farrer et al., 1997). The ε4 allele

codes the E4 isoform of the APOE protein, which is associated to

a deficient neuronal cholesterol delivery, as well as poor clear-

ance of extracellular Aβ, therefore facilitating the formation of

fibrillary plaques (Liu et al., 2013). In cognitively unimpaired

individuals, APOE-ε4 has been related to faster rates of cerebral

Aβ accumulation (Reiman et al., 2009; Jansen et al., 2015), as

well as lower brain glucose metabolism (Reiman et al., 2005).

These effects appear to be dose-dependent, that is, proportional

to the number of APOE-ε4 alleles (see Fouquet et al., 2014 for a

review). With respect to brain structure, some previous studies

have reported significantly different gray matter volumes in

healthy ε4-carriers compared with noncarriers (NC) in regions

typically associated to AD degeneration, such as the hippocam-

pus, frontal, and temporal areas (Honea et al., 2009; Alexander

et al., 2012; TenKate et al., 2016).Wehave recently reported dose-

dependent effects of the risk allele on posterior hippocampal

volume and onother areas in a sample of cognitively unimpaired

individuals that was genetically enriched for the presence of

APOE-ε4 homozygotes (Cacciaglia et al., 2018a). However, the

adoption of a univariate statistical approach prevented us to

investigate the role of APOE-ε4 on the structural organization of

the brain.

The adoption of multivariate methods for the study of cere-

bral anatomy allows the detection of gray matter networks

(GMn), which are expression of the coordinated volumetric vari-

ability across several brain areas. Unlike univariate voxel-based

or region of interest analyses, this approach provides essential

information on the intrinsic organization of cerebral morphol-

ogy and itmay thus capture subtle differences not yet observable

with traditional approaches (Alexander-Bloch et al., 2013; Guo

et al., 2014). GMn have been studied in relation to cognitive

abilities in healthy people (Eckert et al., 2010; Yoon et al., 2017),

as well as in psychiatric (Xu et al., 2009; Kasparek et al., 2010)

and neurologic (Steenwijk et al., 2016) disorders. For exam-

ple, AD patients show significantly reduced structural covari-

ance within the regions of the default mode network (DMN)

(Seeley et al., 2009; Spreng and Turner, 2013). Yet, most of the

studies investigating GMn have relied on the selection of a

seed region to identify common cerebral networks, such as the

DMN, salience, or the executive control (Evans, 2013). While

this approach has the advantage of studying brain systems

that are known to regulate cognitive functions, it prevents from

uncovering additional hidden sources of variance,whichmay be

subject to preclinical alterations in asymptomatic individuals.

Therefore, the goal of the present study was to investigate

GMn as a function of the APOE genotype using a data-driven,

spatially unbiased approach, to provide further insights on the

structural vulnerability associated to the genetic risk for AD.We

assessed both within- and between-networks structural covari-

ance, capitalizing on a large sample (n=533) of cognitively unim-

paired individuals,whichwas enriched for the genetic risk of AD

by hosting an unprecedented number of APOE-ε4 homozygotes

for a single-site imaging study (n=65). This sample character-

istic allowed us to test different models of genetic penetrance

enabling to pinpoint distinctive cerebral features as a function

of the allelic load. In addition, to better characterize GMn, we

determined their association with age and cognitive perfor-

mance in the entire sample. In order to rule out the influence

of amyloid pathology in our findings, we repeated the analyses

on a subsample of participants that was amyloid-negative.

Materials and Methods

Study Participants

Participantswere enrolled to the ALFA (ALzheimer and FAmilies)

study (Clinicaltrials.gov Identifier: NCT01835717), a research

platform aiming at the identification of pathophysiological

alterations in preclinical AD. The ALFA cohort entangles 2743

cognitively unimpaired individuals, with a Clinical Dementia

Rate score of 0, most of them being first-order descendants of

AD patients (Molinuevo et al., 2016). Subjects with a psychiatric

diagnosis were excluded from the study. Additional exclusion

criteria were described in detail previously (Molinuevo et al.,

2016). After APOE genotyping, which is described in detail in

the Supplementary Material, all participants homozygous for

the ε4 allele as well as carriers of the ε2 allele were invited

to undergo magnetic resonance imaging (MRI) scanning along

with ε4-heterozygotes (ε4HET) and NC matched for age and sex.

This recruitment strategy resulted in 576 study participants,

out of which 43 had to be discarded due to MRI incidental

findings or poor image quality, leading to a final sample of 533

individuals. For the statistical analyses,participantswere pooled

according to the cumulative presence of the ε4 allele, that is, NC,

ε4HET and ε4-homozygotes (ε4HMZ). The study was approved

by the local ethics committee and conducted according to the

principles expressed in the Declaration of Helsinki, with all

subjects providing written informed consent.

Image Data Acquisition and Preprocessing

MRIwas conductedwith the sameMR equipment and in a single

site for each study participant (3 T General Electric scanner, GE
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Discovery MR750W). Structural 3D high-resolution T1-weighted

images were collected using a fast spoiled gradient-echo

sequence with the following parameters: voxel size= 1 mm3

isotropic, repetition time (TR) = 6.16 ms, echo time (TE) = 2.33 ms,

inversion time (TI) = 450 ms, matrix size =256 × 256 × 174, and

flip angle = 12◦. The new segment function implemented in

Statistical Parametrical Mapping software (SPM 12, Wellcome

Department of Imaging Neuroscience, London, UK) was used to

segment gray matter in native space and locate all images into

a common reference space for subsequent normalization, using

a 12-affine parameter transformation. Segmented GM images

were used to generate a reference template of the sample,

which was warped into a standard Montreal Neurological

Institute (MNI) space using the high-dimensional DARTEL

toolbox (Ashburner, 2007). The generated flow fields and

normalization parameters were then implemented to normalize

the native GM images to the MNI space. In order to preserve the

native local amount of GM volume, we applied a modulation

step, where each voxel signal’s intensity was multiplied by the

Jacobian determinant derived from the normalization procedure

(Good et al., 2001). Quality control of normalization was assured

by checking the sample homogeneity with the computational

anatomy toolbox (CAT12) (http://dbm.neuro.uni-jena.de/cat/)

using nonsmoothed data, which did not return errors in the

registration procedure in any subject. Finally, images were

spatially smoothed with a 6-mm full-width at half maximum

Gaussian kernel. Total intracranial volume (TIV) was computed

by summing the segmented GM, white matter (WM), and

cerebrospinal fluid (CSF) volumes for each individual.

Assessment of the Gray Matter Networks

After preprocessing, GMn were assessed from normalized and

smoothed images using source-based morphometry (SBM) (Xu

et al., 2009), implemented in the GIFT software (http://mialab.

mrn.org/software/gift/index.html). SBM uses independent com-

ponent analysis (ICA) to decompose signal intensity across the

images into sources of common variance. This procedure uses

variance in the data to detect brain regions that covary in terms

of gray matter volume, and therefore represent a structural

network.We used the Infomax neural network algorithm,which

iteratively minimizes the mutual information of the network

outputs to identify naturally grouping and maximally inde-

pendent sources (Bell and Sejnowski, 1995). The number of

independent components was estimated data-driven on the

basis of the computation of the correspondent latent principal

components. This was achieved using theminimum description

length criteria (Li et al., 2007). To increase component reliabil-

ity and consistency, we used the ICASSO algorithm (Himberg

et al., 2004) and repeated ICA 250 times with bootstrapping

and random initialization. Each individual gray matter image

was converted into a 1D vector and arrayed into a matrix of

number of subject by each voxel’s intensity. This group image

matrix was then decomposed into amixingmatrix, representing

the weights of each component for each subject, and a source

matrix, representing the relationship between each component

and brain voxels. The mixing matrix contained the loadings

for each component, which were submitted to group statistical

analyses. After components estimation, we removed those with

poor clustering as revealed by a quality index Iq < 0.8 indicating

the difference between intracluster and extracluster similarity

(Himberg et al., 2004). Remaining components were visually

inspected to select those of biological relevance. In so doing, we

removed components containing sharp edges near to the brain

parenchyma, or primarily appearing in nongray matter areas

(i.e., WM or ventricles), as previously recommended (Xu et al.,

2009).

Neuropsychological Evaluation

We evaluated episodic memory (EM) and processing speed

(PS), two cognitive domains that have been included in the

preclinical Alzheimer cognitive composite (Donohue et al.,

2014) and for which we have already delineated the underlying

cerebral morphology in a subsample of the present study

(Cacciaglia et al., 2018b, 2019). EMwas assessedwith the Spanish

adapted version of the memory binding test (Gramunt et al.,

2016), an instrument that was developed for the detection of

subtle impairments in the healthy population (Buschke, 2014).

A description of the administration procedure is available at

the online Supplementary Material. PS was assessed with the

coding subtest of the Wechsler Adult Intelligence Scale-Fourth

Edition (Wechsler, 2012), where participants are given keys that

match numeric digit spanning from 1 to 9 with a symbol. The

task is to write down the correct symbol aside a list of numbers

as quickly as possible.

CSF Sampling and Analysis

CSF was sampled on average 4.11 years after MRI data acqui-

sition. Fresh CSF samples were collected in 15 mL polypropy-

lene tubes (Sarstedt catalog #62.554), the supernatant aliquoted

into 0.5 mL polypropylene tubes (Sarstedt catalog #72.730.005),

and frozen within 2 h after lumbar puncture. Aliquots were

placed into long-term storage boxes and stored at −80 ◦C until

shipment on dry ice for analysis. CSF samples were measured

using the Elecsys β-amyloid (1–42) (Bittner et al., 2016), and the

Elecsys phosphotau (181P) and Elecsys total-tau immunoassays

for CSF on a cobas e 601 analyzer (software version 05.02) at the

Clinical Neurochemistry Laboratory, University of Gothenburg,

Sweden. Individuals with CSF Ab42 values below 1098 pg/mL

were categorized as negative (Schindler et al., 2018).

Statistical Analyses

The impact of APOE-ε4 on GMn was determined separately for

within- and between-networks structural covariance. In the

former case, we conducted an analysis of covariance (ANCOVA)

with each component’s factor loadings modeled as dependent

variable, while including age, sex, and TIV as covariates. For the

between-networks analysis, we repeated the same ANCOVA

and additionally modeled, for any structural component as

dependent variable, the interaction between APOE-ε4 and

any other component. This interaction term captures the

modulatory effect ofAPOE-ε4 on the structural coupling between

any two components. In all models,APOE-ε4 group membership

was entered as independent fixed factor. To this respect, we

tested three different genetic models of penetrance: additive,

dominant, and recessive. Briefly, an additive model predicts

an incremental response of the quantitative trait according to

the allelic load, whereas a dominant model predicts a common

response to one or two copy of the risk allele (i.e., ε4-carriers vs.

NC). Finally, a recessive model predicts a common response to

zero or one copy of the risk allele (i.e., NC and ε4HET vs. ε4HMZ)

(Clarke et al., 2011). To assess the linear association between

age and GMn, two-tailed Pearson’s correlation was performed
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Table 1 Sample characteristics

Total sample (n=533) NC (n=261) ε4HET (n=207) ε4HMZ (n=65) P-value

Age (y) 57.58 (7.43) 57.93 (7.53) 58.22 (7.41) 54.14 (6.18) <0.01

Sex (F/M) 320/213 166/95 113/94 41/24 0.13

Education (y) 13.64 (3.56) 13.69 (3.62) 13.66 (3.53) 13.38 (3.46) 0.82

TIV (cm3) 1490.11 (146.07) 1484.96 (155.17) 1495.41 (137.73) 1493.91 (135.20) 0.72

TPR 24.18 (4.46) 23.91 (4.81) 24.23 (4.20) 25.14 (3.69) 0.21a

TFR 16.54 (5.17) 16.45 (5.22) 16.29 (5.08) 17.66 (5.15) 0.60a

TDPR 23.90 (4.60) 23.65 (4.87) 23.94 (4.40) 24.82 (3.98) 0.27a

TDFR 16.89 (5.18) 16.58 (5.35) 16.90 (4.78) 18.11 (5.62) 0.29a

Coding 65.50 (15.20) 65.67 (15.83) 64.26 (14.85) 68.78 (13.28) 0.63a

Note: NC: noncarriers; ε4HET: ε4-heterozygotes; ε4HET: ε4-homozygotes; TIV: total intracranial volume; M: mean; SD: standard deviation; TPR: total paired recall; TFR:
total free recall; TDPR: total delayed paired recall; and TDFR: total delayed free recall. Except for the categorical variable sex, numbers represent mean and SD.
aCorrected for age, sex, and years of education.

between each structural component’s factor loading and age.

Lastly, to detect the association between GMn and cognitive

performance, two-tailed partial correlation controlling for age

and sex was performed between each IC factor loading and

cognitive scores in both EM and PS. All the results were consid-

ered significant at P< 0.05, after correction for multiple testing

using false discovery rate (FDR) (Benjamini and Hochberg, 1995).

Analyses were repeated in the amyloid-negative subsample.

Results

Participants’ Demographics and Cognitive Data

Table 1 summarizes demographic information stratified across

APOE-ε4 subgroups along with cognitive scores. NC, ε4HET, and

ε4HMZ did not significantly differ in years of education, propor-

tion ofmales/females, or TIV. Similarly, therewere no significant

differences in any cognitive variable after adjusting for covari-

ates. However, ε4HMZ were significantly younger than both NC

and ε4HET. For this reason, age was included as covariate in all

subsequent analyses. The range of the assessed demographic

and cognitive variables is provided in the Supplementary Mate-

rial (see Supplementary Table 1).

APOE-ε4 and Gray Matter Networks: Within
Network Analysis

Our ICA retrieved 45 ICs, which were reduced to 16 biologically

relevant GMn of interest, upon applying the criteria described

above. Figure 1 shows surface rendering of four exemplary GMn

projected onto a mesh template, along with a chord diagram

exemplifying the correlations among all networks in the entire

sample.

The genotypic recessive model yielded a significant main

effect of APOE-ε4 on IC29, where ε4HMZ showed higher struc-

tural covariance comparedwith both NC and ε4HET (F4,533 =8.71;

P=0.003; and PFDR =0.044) (Fig. 2). This network (IC29) consisted

of prominently right-lateralized regions including parietal,

inferior frontal, as well as inferior and middle temporal regions

(Table 2). In addition, the left angular gyrus and precuneus,

as well as the left middle and inferior temporal cortex were

included (Table 2). All of these regions were previously included

within a composite region of interest known as AD-signature,

which undergoes focal atrophy early in the course of AD

(Bakkour et al., 2009, 2013; Dickerson et al., 2009, 2011). Figure 2A

shows the spatial overlay between IC29 and a reconstruction

of the AD-signature, which was performed on the basis of

the regions provided in Dickerson et al. (2009). The additive

model retrieved a nominally significant difference in the same

component (IC29), which however did not survive correction

for multiple testing (F4,533 =4.35; P=0.013; and PFDR =0.239). No

other ICs showed significantly different values among the three

genotype groups.

APOE-ε4 and Gray Matter Networks: Between
Network Analysis

Of the tested genotypic models, the dominant one yielded a sig-

nificant effect ofAPOE-ε4 (F1,533 =8.23; P=0.004; and PFDR =0.048)

in modulating the linear association between IC10 and IC15

(Fig. 3A). IC10 included both medial and lateral aspects of the

superior frontal cortex bilaterally, with the inclusion of the

middle cingulate gyrus,while IC15 entangled the frontal poles as

well as the bilateralmiddle temporal gyrus (Fig. 3B). Additionally,

a nominally significant effect was observed under the same

genotypic model and in the same direction for IC02 and IC17

(Fig. 3), which however did not survive correction for multiple

testing (F1,533 =6.84; P=0.009; and PFDR =0.094). Overall, these

results indicate that, when compared with NC, both ε4HET and

ε4HMZ displayed reduced structural covariance between these

couples of networks.

Complementary Analysis in CSF Aβ42

Negative Individuals

To determine to what extent the observed effects were spe-

cific to APOE genetic variance, we reanalyzed data from a sub-

sample of individuals who were classified as negative to CSF

Aβ42 in a retrospective analysis. While this approach is blind

to the actual Aβ42 values when MRI data were acquired, it

allows to identify those who did not have amyloid pathol-

ogy at that time. Of the entire sample (n=533), CSF was avail-

able for 121 individuals. Of those, 71 were Aβ-negative (see

Supplementary Table 2 for a sample description). This analy-

sis showed that, in the subsample with available CSF, ε4HMZ

continued to have significantly greater structural covariance

in IC29 (F3,121 =16.82; P=0.001) (Fig. 2C), and, most importantly,

this was confirmed when we restricted the analysis to those

with negative CSF Aβ42 (F3,71 =7.18; P=0.009) (Fig. 2D), indicating

that these effects were independent on amyloid. Conversely, the

modulatory role of APOE-ε4 on the structural coupling between

IC10 and IC15 observed in the entire sample was not con-

firmedwhen inspected in amyloid negative subjects (F5,71 =0.15;
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Figure 1. Structural GMn. (A) Surface rendering of four exemplary GMn identified in our sample with structural ICA. In each network, warm colors (red–yellow) indicate

areas that are significantly related among each other in terms of GM volume. Cold colors (green–blue) denote the anticorrelation network, that is, brain regions that

display a negative correlation with the areas in the positive correlation network. (B) Chord diagram illustrating the correlation matrix among all the 16 structural

networks. Each sector along the circle, measured by arbitrary bin units in canvas coordinates, represents one structural network, with the length denoting the total

amount of connections of each network. The thickness of inner ribbons indicates the strength of the correlation, while the sign is encoded by the color. (C) Volume

rendering of the 16 structural components projected over axial slices, at their respective global maximum standardized coordinate.

Table 2 Brain regions included in IC29

Brain region Peak intensity Laterality k Peak MNI coordinates

x y z

Cerebellar Crus 2 8.48 L 8022 -42 −51 −34

Precuneus 6.13 R 12126 18 −60 19

Angular gyrus 4.93 R 3132 43 −42 39

Superior parietal 3.87 R 680 21 −48 60

Temporal pole 3.41 R 3921 46 9 −36

Superior frontal 3.31 L 1314 −13 0 66

Middle frontal 3.23 R 409 30 42 21

Superior parietal 3.01 L 211 −19 −70 55

Middle frontal 2.96 L 141 −24 4.5 49

Middle temporal 2.78 L 757 −42 −61 13

Inferior temporal 2.73 L 106 −55 −31 −18

Precuneus 2.65 L 220 −9 −60 45

Middle temporal 2.48 R 296 54 −51 0

Orbitofrontal 2.47 R 351 7.5 40 −4

Inf. front. (Tri) 2.41 R 1033 49 22 4

Middle frontal 2.38 R 267 36 9 43

Inf. front. (Orb) 2.07 L 103 −27 16 −25

Note: k: cluster size, indicates the number of contiguous voxels within each cluster. MNI: Montreal Neurological Institute.

P=0.71), suggesting that this effect may be related to the pres-

ence of amyloid.

Gray Matter Networks and Their Association with
Cognitive Performance

We found significantly negative linear association between all

GMn and age, with the exception of IC20, which entangled

the bilateral superior parietal cortex. Partial correlations did

not reveal significant relationships between any GMn and EM.

However, for PS, we observed significantly positive associations

in four networks as well as significantly negative associations in

two networks (Table 3).

Discussion

We have reported that APOE-ε4 risk variant for AD exerts a

significant impact on intrinsic GMn in cognitively unimpaired

middle-aged individuals.
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Figure 2. APOE-ε4 homozygotes showed altered structural brain covariance. (A) Volume rendering of IC29 overlaid on the AD-signature composite region of interest,

projected over sagittal slides. Brown areas indicate the spatial overlay between the two rendered volumes, which was evident in the inferior parietal, frontal as well as

middle and inferior temporal areas and the precuneus. (B–D) Boxplot charts showing significantly heightened structural covariance of IC29 in APOE-ε4 homozygotes

compared with both NC and heterozygotes. The width of each box indicate the interquartile range, with the horizontal line showing the median. Data from each

individual are shown in a separate vertical column. NC: noncarriers; ε4HET: APOE-ε4 heterozygotes; and ε4HMZ: APOE-ε4 homozygotes.

Table 3 Linear correlations between GMn and PS in the entire
sample

Component r-value P PFWE

Positive correlations

IC02 0.13 0.004 0.02

IC13 0.14 0.001 0.02

IC15 0.15 0.001 0.01

IC16 0.12 0.001 0.01

Negative correlations

IC29 −0.12 0.006 0.02

IC30 −0.12 0.002 0.02

Our approach of retrieving naturally grouping sources of

structural covariance within a sample hosting an unprece-

dented number of ε4HMZ (n=65) allowed us to unmask a latent

structural vulnerability imaging phenotype associated to this

risk variant. Within-network analysis revealed that cognitively

intact ε4HMZ had increased structural covariance in one

network (IC29), which included prominently right lateralized

parietal, inferior frontal, as well as inferior and middle temporal

regions. In addition, this network entangled the left angular

gyrus,precuneus, aswell as the leftmiddle and inferior temporal

cortex. IC29 exhibited the least degree of covariance with the

rest of networks, indicating that its variability was not related

to the topological patterns in the rest of the brain. Moreover, it

was negatively associated to PS performance across the entire

sample. Overall, this suggests that IC29 captures an intrinsic

structural organization of the brain that expresses a pathological

process. In support of this, we have observed that nearly all the

regions included in such a network are part of a previously

described composite region of interest, which undergoes focal

atrophy early in the course of AD, the so-called “AD-signature”

(Bakkour et al., 2009, 2013; Dickerson et al., 2009, 2011). Other

research groups detected selective cortical thinning in the

same areas of the AD-signature both in AD and MCI patients
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Figure 3.APOE-ε4 carriers display reduced connectivity between two pairs of structural networks. (A) Chord diagrams computed for each APOE subgroups highlighting

the two network couplings (IC10/IC15 and IC02/IC17), which were affected by the APOE-ε4 genotype. The length of each outer sector is measured by arbitrary bin units

in canvas coordinates and encodes the total amount of connections of a given network. The thickness inside each chord diagram encodes the strength of correlation.

NC: noncarriers; ε4HET: APOE-ε4 heterozygotes; and ε4HMZ: APOE-ε4 homozygotes. (B) Surface rendering of the binarized IC10 and IC15, where an FDR-surviving

significant effect of APOE-ε4 was found. (C) Group scatterplots with marginal densities reported aside each axes, showing the modulatory effect of APOE-ε4 on the

linear association between two pairs of component. Shaded areas around the fitted regression lines indicated 90% confidence interval.

(Singh et al., 2006). These brain regions are also typically subject

to hypometabolism in preclinical (Besson et al., 2015) and full-

blown AD dementia (Alexander et al., 2002; Mosconi, 2013), as

well as in cognitively unimpaired APOE-ε4 carriers compared

with NC (Reiman et al., 2005; Mosconi et al., 2008). It is worth

noting that the temporal and parietal areas included in IC29

have been previously described as “cortical hubs,” that is,

heteromodal regions interconnecting spatially distributed and

functionally specialized brain systems, which, possibly because

of their higher metabolic consumption rates, are especially

vulnerable to the AD neurodegenerative process (Buckner

et al., 2009; Sepulcre et al., 2012). Finally, IC29 overlaps with

the anterior subdivision of the DMN (Xu et al., 2016; Staffaroni

et al., 2018), which is known for being vulnerable in AD (Buckner

et al., 2005; Seeley et al., 2009).

Since its definition, the AD-signature has been validated

as effective diagnostic and prognostic marker. Some studies

demonstrated that AD-signature cortical thinning outperforms

hippocampal volume in predicting conversion from MCI to AD

(Dickerson et al., 2011; Dickerson andWolk, 2013). Dickerson and

Wolk (2013) reported the superior sensitivity of AD-signature

cortical thinning over both amyloid and tau fluid biomarkers

in predicting AD dementia onset within 1 year from baseline

assessment. One study demonstrated that cortical thinning in

these regions was related to suprathreshold CSF tau levels in

cognitively unimpaired individuals (Wang et al., 2015). In the

same study, the authors reported that AD-signature cortical

thinning was negatively related to visuospatial processing

(Wang et al., 2015), which is consistent with the negative associ-

ation we observed between IC29 factor loadings and PS. Notably,

even though the AD-signature was initially detected on the

basis of cortical thickness data, the same regions were retrieved

when comparing AD patients with asymptomatic individuals

adopting a voxel-wise method, a technique similar to the one

used in the present study (Schwarz et al., 2016). In line with this,

exploratory studies employing voxel-basedmorphometry found

that, among MCI patients, only those who later progressed to

AD dementia showed, compared with healthy controls, volume

reductions in AD-signature areas (Chételat et al., 2005; Bozzali

et al., 2006; Whitwell et al., 2008). In our previous study

conducted on the same sample as the one of the present report,

we did not find volume difference among APOE-ε4 subgroups in

these regions (Cacciaglia et al., 2018a). Hence, our data suggest

that an increased structural covariance within the AD-signature

areas in individuals exposed to exceptionally high risk for AD,

such as APOE-ε4 homozygotes, may predate cortical thinning
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as well as hypometabolism in these regions. Moreover, an

exaggerated connectivity among these brain areasmay facilitate

the patterned spreading of AD proteinopathies within this

network, which is well-known for being particularly vulnerable

to AD pathology (Zhou et al., 2012; Ossenkoppele et al., 2019).

Importantly, we replicated this finding in a subsample of

individuals who had no signs of incipient amyloid accumulation

as revealed by negative CSF Aβ42 biomarker, indicating that it

was specifically due to APOE genetic variance. This strongly

suggests that ε4HMZ harbor a structural brain vulnerability that

precedes amyloidosis and supports earlier findings of APOE-ε4

related effects on neurodevelopment (Shaw et al., 2007; Wolf

et al., 2013; Chang et al., 2016). In line with this, some studies

have observed AD-signature cortical thinning in association

with CSF tau levels in asymptomatic, amyloid negative, and

subjects (Wang et al., 2015). In addition,APOE-ε4 has been found

to have an impact on temporoparietal FDG uptake in cognitively

healthy individuals who were Aβ negative (Jagust et al., 2012),

suggesting that its effects on neurodegeneration markers may

occur earlier or independently on amyloid.

Nevertheless, the cross-sectional nature of our study pre-

vents us to draw this conclusion and our data foster upcoming

studies to assess GMn in longitudinal settings.

It is worth noting that the relatively high prevalence of amy-

loid positive individuals in the subset with available CSF data

(n=171, 29% with positive CSF Aβ42) is not surprising, given that

our sample was enriched for the genetic risk of AD, according

to the selection criteria employed in the ALFA study (Molinuevo

et al., 2016).

We should note that IC29was predominantly right-lateralized,

with relatively few and regions appearing in the left hemisphere.

Our data, however, indicate that the magnitude of this

component was associated with the presence of ε4HMZ. The

relative poor representation of this subgroup in the entire

sample (65 out of 533 individuals) may have caused some loss

of signal, resulting in a spatial inhomogeneity. It is possible

that a more balanced sample with an equal number of NC

and heterozygotes as homozygotes would lead to a bilateral

distribution. On the other hand, as noted above, the spatial

topology of IC29 overlaps with the anterior subdivision of DMN

(Xu et al., 2016; Staffaroni et al., 2018). This is in general not

surprising given that networks of structural and functional

covariance share the same topology (Alexander-Bloch et al.,

2018, Smith et al., 2019). In cognitively healthy individuals,

the DMN was found to be mostly left-lateralized with aging

shifting this lateralization to the right side (Agcaoglu et al., 2015).

Interestingly, age-related right-lateralization of the anterior

DMN predicts poorer cognitive outcomes (Banks et al., 2018),

supporting our data on the negative relationship between IC29

and PS. Thus, the predominantly right-lateralized topology of

IC29 may represent an additional indicator of an aging-related

pathological process, encapsulated by this component.

When performing the between-networks analysis, we found

that compared with NC, APOE-ε4 carriers had significantly

decreased structural covariance between IC10 and IC15. The

former component included medial and lateral aspects of the

superior frontal cortex bilaterally, with the inclusion of the

middle cingulate gyrus, while the latter entangled the frontal

poles as well as the anterior cingulate cortex and bilateral

middle temporal gyrus (Fig. 3B). All of these regions constitute

preferential target of early Aβ deposition (Klunk et al., 2004;

Myers et al., 2014; Grothe et al., 2017). Notably, unlike for the

previous finding on the increased covariance within IC29, we

could not replicate this result when restricting the analysis to

amyloid-negative subjects. This might be due to the reduced

statistical power given the lower sample size or be associated

to a putative role of amyloid. In support of the latter, earlier

studies have shown that cortical Aβ deposition impairs synaptic

transmission and consequently reduces the local functional

connectivity between the affected circuits (Lacor et al., 2007;

Palop andMucke, 2010). Thus, it is possible that incipient cortical

Aβ deposition associated with the presence of APOE-ε4 allele

impairs the structural covariance between these two networks

in asymptomatic individuals. This result may represent an AD

intermediate phenotype in a way that it reflects a network

disconnection, in line with the “disconnection hypothesis” of

AD (Delbeuck et al., 2003; Reid and Evans, 2013; Sepulcre et al.,

2013), possibly due to impairment in synaptic communication.

Finally, it is worth noting that the reduced covariance between

IC10 and IC15 was significant under a genotypic dominance

assumption, indicating that the effect was common to the

heterozygote and homozygote groups, compared with NC.

In other words, this neuroimaging phenotype was detectable

already in a subgroup, the ε4HET, which is moderately exposed

to the genetic risk of AD, compared with the ε4HMZ (Liu et al.,

2013). This suggests that the two imaging findings reported

here may reflect distinct levels of the genetic risk for AD, which

appear to be hierarchically organized.

Taken together, our results indicate that APOE-ε4 shapes the

cerebral organization in middle-age asymptomatic individuals,

even in individuals with no amyloid pathology, in a way that

recapitulates focal morphometric alterations observed in MCI

and AD patients. This provides new insights for the structural

vulnerability associated to this highly penetrant risk variant.Our

study promotes the use of structural covariance networks as

a valuable AD intermediate phenotype, which may be subject

to change earlier than cortical thinning or volume loss. Future

studies shall track GMn in longitudinal designs along with more

extensive biomarkers screening to further address potential

interaction between AD-related pathology and APOE genetic

variance.
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