8 research outputs found

    Conserved pseudoknots in lncRNA MEG3 are essential for stimulation of the p53 pathway

    Get PDF
    Funding Information: Work in the Marcia lab is partly funded by the Agence Nationale de la Recherche (ANR-15-CE11-0003-01), the Agence Nationale de Recherche sur le Sida et les H?patites Virales (ANRS, ECTZ18552), and ITMO Cancer (18CN047-00). The Marcia lab uses the platforms of the Grenoble Instruct Center (ISBG UMS 3518 CNRS-CEA-UJF-EMBL) with support from FRISBI (ANR-10-INSB-05-02) and GRAL (ANR-10-LABX-49-01) within the Grenoble Partnership for Structural Biology (PSB). IBS acknowledges integration into the Interdisciplinary Research Institute of Grenoble (IRIG, CEA). This work acknowledges the AFM platform at the IBS.Long non-coding RNAs (lncRNAs) are key regulatory molecules, but unlike with other RNAs, the direct link between their tertiary structure motifs and their function has proven elusive. Here we report structural and functional studies of human maternally expressed gene 3 (MEG3), a tumor suppressor lncRNA that modulates the p53 response. We found that, in an evolutionary conserved region of MEG3, two distal motifs interact by base complementarity to form alternative, mutually exclusive pseudoknot structures (“kissing loops”). Mutations that disrupt these interactions impair MEG3-dependent p53 stimulation in vivo and disrupt MEG3 folding in vitro. These findings provide mechanistic insights into regulation of the p53 pathway by MEG3 and reveal how conserved motifs of tertiary structure can regulate lncRNA biological function.Publisher PDFPeer reviewe

    Structure-functional studies on lncRNA MEG3

    No full text
    Les ARNs long non codants (ARNlnc) jouent un rĂŽle clĂ© dans les processus cellulaires vitaux, notamment le remodelage de la chromatine, la rĂ©paration de l'ADN et la traduction. Cependant, la taille et la complexitĂ© des ARNlnc prĂ©sentent des dĂ©fis sans prĂ©cĂ©dent pour les Ă©tudes molĂ©culaires mĂ©canistiques, de sorte qu'il s'est avĂ©rĂ© difficile jusqu'Ă  prĂ©sent de relier l'information structurelle Ă  la fonction biologique pour les ARNlnc.Le gĂšne 3 humain exprimĂ© maternellement (de l’anglais "maternally expressed gene 3", MEG3), est un ARNlnc abondant, soumis Ă  empreinte parentale et Ă©pissĂ© alternativement. Pendant l'embryogenĂšse, MEG3 contrĂŽle les protĂ©ines Polycomb, rĂ©gulant la diffĂ©renciation cellulaire, et dans les cellules adultes, MEG3 contrĂŽle p53, rĂ©gulant la rĂ©ponse cellulaire aux stress environnementaux. Dans les cellules cancĂ©reuses, MEG3 est rĂ©gulĂ© nĂ©gativement, mais la surexpression ectopique de MEG3 rĂ©duit la prolifĂ©ration incontrĂŽlĂ©e, ce qui prouve que MEG3 agit comme un suppresseur de tumeur. Les donnĂ©es suggĂšrent que les fonctions de MEG3 pourraient ĂȘtre rĂ©gulĂ©es par la structure de MEG3. Par exemple, on pense que MEG3 se lie directement aux protĂ©ines p53 et Polycomb. De plus, les diffĂ©rents variants d'Ă©pissage de MEG3, qui comprennent diffĂ©rents exons et possĂšdent ainsi des structures potentiellement diffĂ©rentes, prĂ©sentent des fonctions diffĂ©rentes. Enfin, la mutagenĂšse par dĂ©lĂ©tion, basĂ©e sur une structure de MEG3 prĂ©dit in silico, a permis d’identifier un motif MEG3 supposĂ© structurĂ© impliquĂ© dans l'activation de p53. Cependant, au dĂ©but de mes travaux, la structure expĂ©rimentale de MEG3 Ă©tait inconnue.Pour comprendre la structure et la fonction de MEG3, j'ai utilisĂ© des sondes chimiques in vitro et in vivo pour dĂ©terminer la structure secondaire de deux variants humains de MEG3 qui diffĂšrent par leurs niveaux d'activation de p53. À l'aide d'essais fonctionnels dans les cellules et de mutagenĂšse, j'ai systĂ©matiquement analysĂ© la structure de MEG3 et identifiĂ© le noyau activant p53 dans deux domaines (D2 et D3) qui sont conservĂ©s structuralement dans les variants humains et conservĂ©s dans l’évolution chez les mammifĂšres. Dans D2-D3, les rĂ©gions structurales les plus importantes sont les hĂ©lices H11 et H27, car dans ces rĂ©gions, j’ai pu supprimer l'activation de p53 grĂące Ă  des mutations ponctuelles, un degrĂ© de prĂ©cision jamais atteint pour les autres ARNlnc jusqu’ici. J'ai dĂ©couvert de maniĂšre surprenante que H11 et H27 sont reliĂ©s par des boucles connectĂ©es l’une Ă  l’autre (de l’anglais "kissing loops") et j'ai confirmĂ© l'importance fonctionnelle de ces interactions de structure tertiaire Ă  longue distance par mutagenĂšse compensatoire. Allant au-delĂ  de l’état de l’art, j'ai donc essayĂ© de visualiser la structure 3D d’une isoforme de MEG3 longue de 1595 nuclĂ©otides, par diffusion de rayons X Ă  petit angle (SAXS), microscopie Ă©lectronique (EM) et microscopie Ă  force atomique (AFM). Alors que le SAXS et l’EM sont limitĂ©s par des dĂ©fis techniques actuellement insurmontables, l’imagerie par AFM m’a permis d’obtenir la premiĂšre structure 3D Ă  basse rĂ©solution de MEG3 et de rĂ©vĂ©ler son Ă©chafaudage tertiaire compact et globulaire. Plus remarquable encore, les mĂȘmes mutations qui perturbent la connexion entre les «boucles» H11-H27 et qui inhibent la fonction de MEG3, perturbent aussi la structure 3D de cet ARNlnc, fournissant ainsi le premier lien direct entre la structure 3D et la fonction biologique pour un ARNlnc.Sur la base de mes dĂ©couvertes, je peux donc proposer un mĂ©canisme de l’activation de p53 basĂ© sur la structure de MEG3, avec des implications importantes pour la comprĂ©hension de la cancĂ©rogenĂšse. Plus gĂ©nĂ©ralement, mes travaux prouvent que les relations structure-fonction des ARNlnc peuvent ĂȘtre dissĂ©quĂ©es avec une grande prĂ©cision et ouvrent la voie Ă  des Ă©tudes analogues visant Ă  obtenir des informations mĂ©canistes pour de nombreux autres ARNlnc d’importance mĂ©dicale.Long non-coding RNAs (lncRNAs) are key players in vital cellular processes, including chromatin remodelling, DNA repair and translation. However, the size and complexity of lncRNAs present unprecedented challenges for mechanistic molecular studies, so that connecting structural information with biological function for lncRNAs has proven difficult so far.Human maternally expressed gene 3 (MEG3) is an abundant, imprinted, alternatively-spliced lncRNA. During embryogenesis MEG3 controls Polycomb proteins, regulating cell differentiation, and in adult cells MEG3 controls p53, regulating the cellular response to environmental stresses. In cancerous cells, MEG3 is downregulated, but ectopic overexpression of MEG3 reduces uncontrolled proliferation, proving that MEG3 acts as a tumour suppressor. Evidence suggests that MEG3 functions may be regulated by the MEG3 structure. For instance, MEG3 is thought to bind p53 and Polycomb proteins directly. Moreover, different MEG3 splice variants, which comprise different exons and thus possess potentially different structures, display different functions. Finally, deletion mutagenesis based on a MEG3 structure predicted in silico identified a putatively-structured MEG3 motif involved in p53 activation. However, at the beginning of my work, the experimental structure of MEG3 was unknown.To understand the MEG3 structure and function, I used chemical probing in vitro and in vivo to determine the secondary structure maps of two human MEG3 variants that differ in their p53 activation levels. Using functional assays in cells and mutagenesis, I systematically scanned the MEG3 structure and identified the p53-activating core in two domains (D2 and D3) that are structurally conserved across human variants and evolutionarily conserved across mammals. In D2-D3, the most important structural regions are helices H11 and H27, because in these regions I could tune p53 activation even by point mutations, a degree of precision never achieved for any other lncRNA to date. I surprisingly discovered that H11 and H27 are connected by “kissing loops”, and I confirmed the functional importance of these long-range tertiary structure interactions by compensatory mutagenesis. Going beyond state-of-the-art, I thus attempted to visualize the 3D structure of a 1595-nucleotide long MEG3 isoform by small angle X-ray scattering (SAXS), electron microscopy (EM), and atomic force microscopy (AFM). While SAXS and EM are limited by currently-insurmountable technical challenges, single particle imaging by AFM allowed me to obtain the first low resolution 3D structure of MEG3 and reveal its compact, globular tertiary scaffold. Most remarkably, functionally-disrupting mutations that break the H11-H27 “kissing loops” disrupt such MEG3 scaffold, providing the first direct connection between 3D structure and biological function for an lncRNA.Based on my discoveries, I can therefore propose a structure-based mechanism for p53 activation by human MEG3, with important implications in understanding carcinogenesis. More broadly, my work serves as proof-of-concept that lncRNA structure-function relationships can be dissected with high precision and opens the field to analogous studies aimed to gain mechanistic insights into many other medically-relevant lncRNAs

    CaractĂ©risation structurale et fonctionnelle de l’ARN long non codant MEG3

    No full text
    Long non-coding RNAs (lncRNAs) are key players in vital cellular processes, including chromatin remodelling, DNA repair and translation. However, the size and complexity of lncRNAs present unprecedented challenges for mechanistic molecular studies, so that connecting structural information with biological function for lncRNAs has proven difficult so far.Human maternally expressed gene 3 (MEG3) is an abundant, imprinted, alternatively-spliced lncRNA. During embryogenesis MEG3 controls Polycomb proteins, regulating cell differentiation, and in adult cells MEG3 controls p53, regulating the cellular response to environmental stresses. In cancerous cells, MEG3 is downregulated, but ectopic overexpression of MEG3 reduces uncontrolled proliferation, proving that MEG3 acts as a tumour suppressor. Evidence suggests that MEG3 functions may be regulated by the MEG3 structure. For instance, MEG3 is thought to bind p53 and Polycomb proteins directly. Moreover, different MEG3 splice variants, which comprise different exons and thus possess potentially different structures, display different functions. Finally, deletion mutagenesis based on a MEG3 structure predicted in silico identified a putatively-structured MEG3 motif involved in p53 activation. However, at the beginning of my work, the experimental structure of MEG3 was unknown.To understand the MEG3 structure and function, I used chemical probing in vitro and in vivo to determine the secondary structure maps of two human MEG3 variants that differ in their p53 activation levels. Using functional assays in cells and mutagenesis, I systematically scanned the MEG3 structure and identified the p53-activating core in two domains (D2 and D3) that are structurally conserved across human variants and evolutionarily conserved across mammals. In D2-D3, the most important structural regions are helices H11 and H27, because in these regions I could tune p53 activation even by point mutations, a degree of precision never achieved for any other lncRNA to date. I surprisingly discovered that H11 and H27 are connected by “kissing loops”, and I confirmed the functional importance of these long-range tertiary structure interactions by compensatory mutagenesis. Going beyond state-of-the-art, I thus attempted to visualize the 3D structure of a 1595-nucleotide long MEG3 isoform by small angle X-ray scattering (SAXS), electron microscopy (EM), and atomic force microscopy (AFM). While SAXS and EM are limited by currently-insurmountable technical challenges, single particle imaging by AFM allowed me to obtain the first low resolution 3D structure of MEG3 and reveal its compact, globular tertiary scaffold. Most remarkably, functionally-disrupting mutations that break the H11-H27 “kissing loops” disrupt such MEG3 scaffold, providing the first direct connection between 3D structure and biological function for an lncRNA.Based on my discoveries, I can therefore propose a structure-based mechanism for p53 activation by human MEG3, with important implications in understanding carcinogenesis. More broadly, my work serves as proof-of-concept that lncRNA structure-function relationships can be dissected with high precision and opens the field to analogous studies aimed to gain mechanistic insights into many other medically-relevant lncRNAs.Les ARNs long non codants (ARNlnc) jouent un rĂŽle clĂ© dans les processus cellulaires vitaux, notamment le remodelage de la chromatine, la rĂ©paration de l'ADN et la traduction. Cependant, la taille et la complexitĂ© des ARNlnc prĂ©sentent des dĂ©fis sans prĂ©cĂ©dent pour les Ă©tudes molĂ©culaires mĂ©canistiques, de sorte qu'il s'est avĂ©rĂ© difficile jusqu'Ă  prĂ©sent de relier l'information structurelle Ă  la fonction biologique pour les ARNlnc.Le gĂšne 3 humain exprimĂ© maternellement (de l’anglais "maternally expressed gene 3", MEG3), est un ARNlnc abondant, soumis Ă  empreinte parentale et Ă©pissĂ© alternativement. Pendant l'embryogenĂšse, MEG3 contrĂŽle les protĂ©ines Polycomb, rĂ©gulant la diffĂ©renciation cellulaire, et dans les cellules adultes, MEG3 contrĂŽle p53, rĂ©gulant la rĂ©ponse cellulaire aux stress environnementaux. Dans les cellules cancĂ©reuses, MEG3 est rĂ©gulĂ© nĂ©gativement, mais la surexpression ectopique de MEG3 rĂ©duit la prolifĂ©ration incontrĂŽlĂ©e, ce qui prouve que MEG3 agit comme un suppresseur de tumeur. Les donnĂ©es suggĂšrent que les fonctions de MEG3 pourraient ĂȘtre rĂ©gulĂ©es par la structure de MEG3. Par exemple, on pense que MEG3 se lie directement aux protĂ©ines p53 et Polycomb. De plus, les diffĂ©rents variants d'Ă©pissage de MEG3, qui comprennent diffĂ©rents exons et possĂšdent ainsi des structures potentiellement diffĂ©rentes, prĂ©sentent des fonctions diffĂ©rentes. Enfin, la mutagenĂšse par dĂ©lĂ©tion, basĂ©e sur une structure de MEG3 prĂ©dit in silico, a permis d’identifier un motif MEG3 supposĂ© structurĂ© impliquĂ© dans l'activation de p53. Cependant, au dĂ©but de mes travaux, la structure expĂ©rimentale de MEG3 Ă©tait inconnue.Pour comprendre la structure et la fonction de MEG3, j'ai utilisĂ© des sondes chimiques in vitro et in vivo pour dĂ©terminer la structure secondaire de deux variants humains de MEG3 qui diffĂšrent par leurs niveaux d'activation de p53. À l'aide d'essais fonctionnels dans les cellules et de mutagenĂšse, j'ai systĂ©matiquement analysĂ© la structure de MEG3 et identifiĂ© le noyau activant p53 dans deux domaines (D2 et D3) qui sont conservĂ©s structuralement dans les variants humains et conservĂ©s dans l’évolution chez les mammifĂšres. Dans D2-D3, les rĂ©gions structurales les plus importantes sont les hĂ©lices H11 et H27, car dans ces rĂ©gions, j’ai pu supprimer l'activation de p53 grĂące Ă  des mutations ponctuelles, un degrĂ© de prĂ©cision jamais atteint pour les autres ARNlnc jusqu’ici. J'ai dĂ©couvert de maniĂšre surprenante que H11 et H27 sont reliĂ©s par des boucles connectĂ©es l’une Ă  l’autre (de l’anglais "kissing loops") et j'ai confirmĂ© l'importance fonctionnelle de ces interactions de structure tertiaire Ă  longue distance par mutagenĂšse compensatoire. Allant au-delĂ  de l’état de l’art, j'ai donc essayĂ© de visualiser la structure 3D d’une isoforme de MEG3 longue de 1595 nuclĂ©otides, par diffusion de rayons X Ă  petit angle (SAXS), microscopie Ă©lectronique (EM) et microscopie Ă  force atomique (AFM). Alors que le SAXS et l’EM sont limitĂ©s par des dĂ©fis techniques actuellement insurmontables, l’imagerie par AFM m’a permis d’obtenir la premiĂšre structure 3D Ă  basse rĂ©solution de MEG3 et de rĂ©vĂ©ler son Ă©chafaudage tertiaire compact et globulaire. Plus remarquable encore, les mĂȘmes mutations qui perturbent la connexion entre les «boucles» H11-H27 et qui inhibent la fonction de MEG3, perturbent aussi la structure 3D de cet ARNlnc, fournissant ainsi le premier lien direct entre la structure 3D et la fonction biologique pour un ARNlnc.Sur la base de mes dĂ©couvertes, je peux donc proposer un mĂ©canisme de l’activation de p53 basĂ© sur la structure de MEG3, avec des implications importantes pour la comprĂ©hension de la cancĂ©rogenĂšse. Plus gĂ©nĂ©ralement, mes travaux prouvent que les relations structure-fonction des ARNlnc peuvent ĂȘtre dissĂ©quĂ©es avec une grande prĂ©cision et ouvrent la voie Ă  des Ă©tudes analogues visant Ă  obtenir des informations mĂ©canistes pour de nombreux autres ARNlnc d’importance mĂ©dicale

    Enhancing CRISPR deletion via pharmacological delay of DNA-PKcs.

    Get PDF
    CRISPR-Cas9 deletion (CRISPR-del) is the leading approach for eliminating DNA from mammalian cells and underpins a variety of genome-editing applications. Target DNA, defined by a pair of double-strand breaks (DSBs), is removed during nonhomologous end-joining (NHEJ). However, the low efficiency of CRISPR-del results in laborious experiments and false-negative results. By using an endogenous reporter system, we show that repression of the DNA-dependent protein kinase catalytic subunit (DNA-PKcs)-an early step in NHEJ-yields substantial increases in DNA deletion. This is observed across diverse cell lines, gene delivery methods, commercial inhibitors, and guide RNAs, including those that otherwise display negligible activity. We further show that DNA-PKcs inhibition can be used to boost the sensitivity of pooled functional screens and detect true-positive hits that would otherwise be overlooked. Thus, delaying the kinetics of NHEJ relative to DSB formation is a simple and effective means of enhancing CRISPR-deletion

    Conserved Pseudoknots in lncRNA MEG3 Are Essential for Stimulation of the p53 Pathway

    Get PDF
    International audienceLong non-coding RNAs (lncRNAs) are key regulatory molecules, but unlike with other RNAs, the direct link between their tertiary structure motifs and their function has proven elusive. Here we report structural and functional studies of human maternally expressed gene 3 (MEG3), a tumor suppressor lncRNA that modulates the p53 response. We found that, in an evolutionary conserved region of MEG3, two distal motifs interact by base complementarity to form alternative, mutually exclusive pseudoknot structures (“kissing loops”). Mutations that disrupt these interactions impair MEG3-dependent p53 stimulation in vivo and disrupt MEG3 folding in vitro. These findings provide mechanistic insights into regulation of the p53 pathway by MEG3 and reveal how conserved motifs of tertiary structure can regulate lncRNA biological function

    Tumour mutations in long noncoding RNAs enhance cell fitness

    Get PDF
    Abstract Long noncoding RNAs (lncRNAs) are linked to cancer via pathogenic changes in their expression levels. Yet, it remains unclear whether lncRNAs can also impact tumour cell fitness via function-altering somatic “driver” mutations. To search for such driver-lncRNAs, we here perform a genome-wide analysis of fitness-altering single nucleotide variants (SNVs) across a cohort of 2583 primary and 3527 metastatic tumours. The resulting 54 mutated and positively-selected lncRNAs are significantly enriched for previously-reported cancer genes and a range of clinical and genomic features. A number of these lncRNAs promote tumour cell proliferation when overexpressed in in vitro models. Our results also highlight a dense SNV hotspot in the widely-studied NEAT1 oncogene. To directly evaluate the functional significance of NEAT1 SNVs, we use in cellulo mutagenesis to introduce tumour-like mutations in the gene and observe a significant and reproducible increase in cell fitness, both in vitro and in a mouse model. Mechanistic studies reveal that SNVs remodel the NEAT1 ribonucleoprotein and boost subnuclear paraspeckles. In summary, this work demonstrates the utility of driver analysis for mapping cancer-promoting lncRNAs, and provides experimental evidence that somatic mutations can act through lncRNAs to enhance pathological cancer cell fitness
    corecore