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SUMMARY

Long non-coding RNAs (lncRNAs) are key regulatory
molecules, but unlike with other RNAs, the direct link
between their tertiary structure motifs and their func-
tion has proven elusive. Herewe report structural and
functional studies of human maternally expressed
gene 3 (MEG3), a tumor suppressor lncRNA that
modulates the p53 response. We found that, in an
evolutionary conserved region of MEG3, two distal
motifs interact by base complementarity to form
alternative, mutually exclusive pseudoknot struc-
tures (‘‘kissing loops’’). Mutations that disrupt these
interactions impair MEG3-dependent p53 stimula-
tion in vivo and disrupt MEG3 folding in vitro. These
findings provide mechanistic insights into regulation
of the p53 pathway by MEG3 and reveal how
conserved motifs of tertiary structure can regulate
lncRNA biological function.

INTRODUCTION

Long non-codingRNA (lncRNA) structures are increasingly being

recognized as important modulators of cellular processes,

including chromatin remodeling, DNA repair, and translation

(Mercer et al., 2009). Among the more than 32,000 human

lncRNAs (Volders et al., 2013), a subgroup emerged as particu-

larly suited for mechanistic studies based on their evolutionary

conservation (Necsulea et al., 2014), specific cellular distribution

(Cabili et al., 2015), tissue localization (Kaushik et al., 2013), and

clinical relevance (Sauvageau et al., 2013; Wapinski and Chang,

2011). The secondary structures of a handful of such lncRNAs

have been experimentally mapped, including SRA (Novikova

et al., 2012b), HOTAIR (Somarowthu et al., 2015), XIST (Smola

et al., 2016), RepA (Liu et al., 2017), roX (Ilik et al., 2013),

BRAVEHEART (Xue et al., 2016), COOLAIR (Hawkes et al.,

2016), NEAT1 (Lin et al., 2018), and parts of lincRNA-p21 (Chillón

and Pyle, 2016). However, unlike with other RNAs, it has not yet
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been possible to systematically connect information regarding

tertiary structure motifs of lncRNAs with their biological function,

partly because the size and complexity of these molecules pre-

sent unprecedented challenges for biophysical studies.

Humanmaternally expressed gene 3 (MEG3) is an alternatively

spliced nuclear lncRNA abundant in the brain, placenta, and

endocrine glands (Mondal et al., 2015; Zhang et al., 2003).

MEG3 is expressed under the control of differentially methylated

promoters from the Dlk1-MEG3 imprinted locus on chromosome

14q32, which also encodes other ncRNAs, none of which over-

lap with MEG3 exons (McMurray and Schmidt, 2012; Miyoshi

et al., 2000). In embryonic cells, where it is not imprinted

(McMurray and Schmidt, 2012), MEG3 silences genes involved

in neurogenesis by regulating chromatin targeting of Polycomb

proteins, and MEG3 expression is needed during neuronal

development (Kaneko et al., 2014; Mercer et al., 2008; Mondal

et al., 2015). Instead, in adult cells, where it becomes imprinted,

MEG3 stimulates the p53 pathway, inducing cell cycle arrest and

apoptosis (Zhou et al., 2007). In most human cancer cell lines

and certain primary tumors, such as pituitary adenoma, MEG3

is downregulated via hypermethylation of the maternal allele,

but its ectopic expression reduces tumor progression; thus,

MEG3 acts as a tumor suppressor (Cheunsuchon et al., 2011;

Zhou et al., 2012). Therefore, understanding the molecular

mechanism of MEG3 is crucial to improve our knowledge of spe-

cific p53-related carcinogenic pathways.

In vitro and in vivo studies suggest that MEG3 interacts with

p53 protein, leading to selective upregulation of p53 target genes

(Zhou et al., 2007; Zhu et al., 2015). The 27 known splice variants

of MEG3, which contain variable middle exons flanked by com-

mon exons at the 50 (E1–E3) and 30 (E10–E12) ends, vary in their

ability to stimulate the p53 pathway (Zhang et al., 2010b).

Changes in the MEG3 splicing pattern under stress lead to fluc-

tuations in the p53 stress response (Zhang et al., 2010b). Inter-

estingly, deletion mutagenesis of MEG3 impairs stimulation of

the p53 pathway, suggesting that specific regions of this lncRNA

are important for the p53 response (Zhang et al., 2010b; Zhou

et al., 2007). However, the link between the structure of MEG3

and its functional effects on p53 remains to be defined.

To address this issue, we set out to characterize the second-

ary and tertiary structures of three MEG3 splice variants in vitro
ors. Published by Elsevier Inc.
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and in vivo. Guided by cell-based functional assays, we identi-

fied the functional core of MEG3. We found that two distal motifs

complementary to each other in sequence are strictly required

for stimulation of the p53 pathway. Point mutations designed

to break the long-range base-pairing interactions between these

motifs and to perturb the global 3D fold of MEG3 severely impair

its ability to stimulate the p53 pathway. These findings under-

score the importance of specific MEG3 tertiary structural

elements for stimulation of the p53 pathway and provide mech-

anistic insights into this important tumor suppressor lncRNA.

RESULTS

Three Splicing Variants of Human MEG3 Share a
Common Structural Core that Is Evolutionarily
Conserved in Mammals
We expressed and purified the most abundant MEG3 splice

variant (v1 or MEG3) as well as the two variants that induce the

lowest (v3 or MEG3a) and the highest (v9 or MEG3e) degree of

stimulation of the p53 pathway. After confirming homogeneity

(Figures 1A–1E; Table S1), we mapped the secondary structures

of these three variants by in vitro selective 20-hydroxyl acylation
analyzed by primer extension (SHAPE) using 3 reagents

(1-methyl-7-nitroisatoic anhydride [1M7], 1-methyl-6-nitroisa-

toic anhydride [1M6], and N-methylisatoic anhydride [NMIA];

Figures 1G and S1–S3). We then used a fourth reagent (dimethyl

sulfate [DMS]; Figure S1) to validate themap of v1, whichwe take

as the reference isoform for structural description.

Variant v1, which spans 1,595 nt defined by common exons

E1–E3 and E10–E12 and by varying E5, adopts amodular organi-

zation, including 5 structural domains (D1–D5)whose boundaries

localize close toexon junctions, so thatD2 (nt 230–410) andD3 (nt

471–902) together comprise E3 (Figures S1A, S2A, and S3). D2

and D3 are also preserved in v3, which starts 24 nt downstream

of v1 and spans 1,712 nt defined by variable E6 along with

E1–E3/E5/E10–E12 (Figures S1B, S2B, and S3), and in v9, which

spans 1,481 nt defined by common E1–E3/E10–E12 and lacks

any variable middle exon (Figures S1C, S2C, and S3). The most

structurally stable portion of MEG3 (D2-D3; Figure 1G) folds

reproducibly independent of the computational algorithm used

to compute its secondary structure (Superfold, Siegfried et al.,

2014; or RNA structure, Reuter and Mathews, 2010; Figure S4).

This motif also corresponds to the most evolutionarily

conserved region of MEG3. For instance, Rfam family RF01872

covers a region in E3 (H21–H23) common to 53 putative MEG3

sequences from 40 mammals. Using the sequence of E3 and

BLAT (Kent, 2002), we identified the complete E3 in 46mammals,

covering all mammalian orders except Monotremata (orders
Figure 1. The MEG3 D2-D3 Structural Core

(A and B) Native agarose gel electrophoresis (A) and size exclusion chromatogra

(C–E) Dynamic light scattering (DLS; C), analytical ultracentrifugation (AUC; D), a

(F) SHAPE reactivity values of individual nucleotides in D2 and D3 (H11 and TRs

ex vivo minus in vivo reactivity values and deltaSHAPE values (endogenous ME

transfected v1. Top: magnification of in vivo 1M7 reactivity values for H11 and th

Figures S1–S4.

(G) Structure of selectedmotifs in the D2-D3 core (D indicates domains, H helices,

with the core shown in red.

984 Molecular Cell 75, 982–995, September 5, 2019
defined according to Tarver et al., 2016). MEG3 transcription

has been confirmed and annotated in the NCBI for only 6 of these

46 species (human, orangutan, mouse, rat, cow, and pig).

Besides E3, we also identified E1 and E2 in 33 species and

E10–E12 in 19 species. We additionally identified E12 but not

E10 or E11 in 21 species. We could not detect, or only partially

detected E1 and E2 in Prosimians, Eulipotyphla, Xenarthra, Afro-

theria, andMarsupialia, and we could not identify E10–E12 in Xe-

narthra and Marsupialia. Finally, we could not identify MEG3

beyond mammals (Table S2; Data S1). Because E3 is the most

conserved region of MEG3, we aligned this region in Infernal,

including the corresponding secondary structure information

from v1 (Figure 2). The final alignment includes 41 mammalian

MEG3 sequences and reveals that the most conserved region

is theH11 stem-loop structure, inwhich 6 bp and the entire termi-

nal loop are invariant and 3 additional bp co-vary.

In summary, our data suggest that, in human MEG3 exon E3,

which comprises domains D2 and D3, represents the most

conserved portion in sequence and secondary structure.

Systematic Cell-Based Assays Dissect the Functional
Contribution of Each Structural Domain of MEG3
To assess the relationship between the MEG3 secondary struc-

ture and the function of this lncRNA as a tumor suppressor, we

performed cell cycle (Lu et al., 2013) and luciferase reporter

assays (Zhang et al., 2010a) in HCT116, a human cell line that ex-

presseswild-typep53andnegligible levels of endogenousMEG3

(FigureS5N). Cell cycle assays showed thatMEG3 induces arrest

specifically at the G1/S but not the G2/M checkpoint and does

not induce apoptosis in HCT116 (Figures 3A–3C, 3F–3H, S5A–

S5C, and S5F–S5H). Cell cycle arrest by MEG3 is exclusively

p53-dependent because we did not observe any MEG3 effect

in HCT116-p53�/� cells (Figures 3I and S5I). Furthermore, lucif-

erase reporter assays showed that MEG3 stimulates expression

of p53 target genes. The MEG3 effect is dose-dependent and

exclusively p53-dependent because luciferase production in

HCT116-p53�/� cells is minimal and identical in cells transfected

with MEG3 or a control vector (Figures 3J and S5J–S5M). Impor-

tantly, the intensity of the MEG3 effect depends on the p53

response element (p53RE) in the promoter of the luciferase re-

porter gene (Figure 3K). We identified two reporters on which all

three MEG3 variants are active: one possessing an optimized

p53RE used in previous MEG3 studies (p53Luc; Zhang et al.,

2010a) and another possessing the p53RE of the endogenous

MDM2 gene (pGL-MDM2; Menendez et al., 2010).

Using the luciferase assay and the p53Luc reporter, we sys-

tematically probed the structure of v1 (Figures 4A–4D). We found

that none of the v1 domains in isolation can activate p53 and that
phy (SEC; B) of v1, v3, and v9.

nd SEC coupled to multi-angle laser light scattering (MALLS; E) profiles of v1.

motifs are delimited by the dotted vertical lines). Bottom: difference between

G3 datasets). Center: in vivo 1M7 reactivity values in endogenous MEG3 and

e TRs. Structure maps and complete data from in vitro probing are reported in

and J junctions). Inset: schematic of the complete v1 structure (from Figure S1),



Figure 2. Evolutionary Conservation in the MEG3 Core

R2R plot of 41 D2-D3 (E3) sequences aligned in Infernal (color legend at the bottom left; Weinberg and Breaker, 2011). Arrows indicate covariant base pairs of

potential statistical significance (see STAR Methods for details). Human sequences of the H27 TRs, corresponding base-pairing to the H11 terminal loop, and

potential covariation of the base-pairing interaction are shown at the top right.
D1/D4/D5 are dispensable for stimulation of the p53 pathway. In

contrast, deletion of either D2 or D3 (constructs DD2 and DD3)

abolishes stimulation of the p53 pathway. Curiously, deletion

of D4 or D5 enhances v1 activity. The same stimulation/inhibition

pattern can be observed for individual exons. Deleting E5 (as

in v9), E10, E11, or E12 stimulates the p53 pathway, but neither

E1 or E2 nor E10–E12 in isolation can stimulate the p53 pathway.

The only exon that can stimulate the p53 pathway in isolation is

E3, which covers D2-D3. Interestingly, D2, which is inactive in

isolation, can partially stimulate the p53 pathway when co-trans-

fectedwithDD2, which is also inactive per se, suggesting that D2

and D3 functionally cooperate when supplied either in cis or in

trans (Figure 4A).

Considering that D2-D3 is also the most conserved portion of

MEG3, we systematically focused on this region for detailed

functional probing. We found that deleting H8 (D2) or H17,

H28, and H21–H23 (D3) does not have a significant effect on
activity, but deletion of H11 (D2) or H25–H29 (D3) dramatically re-

duces stimulation of the p53 pathway (Figure 4B). Remarkably,

within H11, disrupting the helical stem abolishes p53 stimulation,

which can be recovered to near wild-type levels by compensa-

tory mutations, suggesting that the structure of this element is

essential for function (Figures 4C and 4D). Furthermore, deleting

the H11 terminal loop (nt 366–373 in v1) or mutating all of its res-

idues to adenosines (mutant H11LpA) impairs stimulation of the

p53 pathway. Most strikingly, nearly all point mutations at posi-

tions 368–372 in the H11 terminal loop (GUGAG motif) also

abolish stimulation of the p53 pathway (Figure 4C).

We thus focused on the H11LpA and G370C mutants to analyze

the effects ofH11mutations onp53 regulation. First, we found that

H11LpA andG370C reduce luciferase expression not only from the

p53Luc but also from the pGL-MDM2 promoter (�35% residual

activity with respect to v1), and, most importantly, both mutants

failed to arrest the cell cycle (Figures 3D and 3E). Second, we
Molecular Cell 75, 982–995, September 5, 2019 985



Figure 3. Selective Stimulation of the p53 Pathway by MEG3 Variants

(A–I) Cell cycle and apoptosis analysis of v1 (A), v3 (B), v9 (C), H11LpA (D), and G370C (E) in HCT116-p53+/+, apoptosis analysis of v1 (F), v3 (G), v9 (H) in HCT116-

p53+/+, and cell cycle analysis of v1 in isogenic p53�/� cell lines (I). E.A., early apoptotic; L.A., late apoptotic.

(J) Luciferase assay performed in HCT116-p53�/� cells (absolute ratio of firefly luciferase versus Renilla luciferase chemiluminescence).

(K) Stimulation of the p53 pathway by v1, v3, v9, and p14ARF on 4 reporter vectors possessing different p53REs (pG13Luc, p53Luc, pGL-p21, and pGL-MDM2).

Data were normalized to the signal of corresponding empty vectors. For this experiment, 500 ng of MEG3 vectors and 50 ng of p14ARF vectors were used for

transfection in 12-well plates.

Error bars indicate SEM of 3 experiments.
established, by qRT-PCR and western blot, that v1 induces p53

expression, as reported previously (Zhou et al., 2007), but the

H11LpA and G370C mutants do not (Figure 4E). Finally, by qRT-

PCR and western blot, we revealed that v1 induces expression

of endogenous p53 target genes, in line with previous reports

(Zhou et al., 2007), but the H11LpA and G370C mutants do not,

as expected from our luciferase reporter data (Figure 4F).

In summary, the p53-stimulating core of MEG3 is formed by

D2 and D3 and specifically involves the two structural motifs

H11 (D2) and H25–H29 (D3). Both the structure of the highly

conserved H11 stem and individual nucleotides in the invariant

H11 terminal loop are essential for stimulation of the p53

pathway and for cell cycle regulation.
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The Functional and Evolutionarily Invariant H11 Stem-
Loop Structure Is Not a Protein-Binding Site
Because the effects of MEG3 on p53 and its target genes have

been proposed to depend on a direct MEG3-p53 interaction

(Zhou et al., 2007; Zhu et al., 2015), we performed RNA immuno-

precipitation (RIP) and pull-down experiments to compare v1

with the H11LpA mutant and examine whether the functional

importance of H11 is related to protein binding, as reported previ-

ously for other lncRNA structural motifs (Ilik et al., 2013; Lu et al.,

2016; Somarowthu et al., 2015; Xue et al., 2016). ByRIP, we found

that p53 interacts to a similar extent with both v1 and H11LpA and

comparably to lncRNA DINO (Schmitt et al., 2016; Figure 4G).

Analogously, by pull-down using biotinylated RNA, we could
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detect similar levels of p53 bound to v1and toH11LpA (Figure 4H).

Thus, we conclude that H11 is not involved in p53 binding.

We subsequently analyzed whether H11 is involved in other

intermolecular interactions in the cell. To this end, we performed

in vivo/ex vivo chemical probing analysis. These techniques both

compare the chemical reactivity of MEG3 folded in the cellular

environment, either in the presence of protein partners (in vivo)

or after gentle extraction and protein removal under experi-

mental conditions that are not expected to denature the RNA

secondary structure (ex vivo) (Smola et al., 2015a; Figure 1F).

To overcome the challenge posed for cellular probing by the

complex alternative splicing pattern of MEG3, in our study we

used WI38 fibroblasts to probe endogenous MEG3 (expression

levels are reported in Figure S5N; expressed variants are v1

[68%] and v9 [26%]; Zhang et al., 2010b) and HCT116 cells to

probe transfected v1 (expression levels of endogenous MEG3

in this cell line are negligible; Figure S5N). In vivo SHAPE reac-

tivity values of individual nucleotides in the MEG3 core (D2-D3)

in endogenous and transfected samples are similar (Figure 1F),

suggesting that this region folds reproducibly in different cell

lines. This observation reinforces the notion that D2-D3 is an

important structural element of MEG3 and corroborates the

use of the transfected system as a proxy to mimic near-physio-

logical conditions for our functional assays. Surprisingly, within

the H11 motif, we could not detect any significant reactivity dif-

ference between ex vivo and in vivo conditions (deltaSHAPE),

suggesting that nucleotides in this region are unlikely to be

involved in protein binding (Figure 1F).

In summary, our data reveal that non-functional H11 mutants

preserve affinity for p53.More broadly, our in vivo/ex vivoSHAPE

probing establishes that the H11 stem-loop structure is not a

protein binding site, despite its high degree of sequence and

structural conservation.

H11 Forms Conserved and Functional Pseudoknot
Structures (‘‘Kissing Loops’’) with H27
Seeking a molecular explanation for the functional importance of

H11, we noticed that its terminal loop (residues 368–372,

GUGAG motif) is chemically unreactive in vitro in all of our
Figure 4. Functional Importance of MEG3 Structural Motifs

(A–C) p53-dependent luciferase assays using the p53Luc reporter on MEG3 varia

H11mutants (C). Construct D5 is indicated in parenthesis because it is more than 1

reported in Figure S5O. Error bars indicate SEM of at least 3 experiments. Asterisk

based on one-way ANOVA statistical tests in GraphPad (*p % 0.05, **p % 0.01,

(D) Sequences used to disrupt the H11 stem (H11-50mut, red nucleotides) and c

(E) qRT-PCR and western blot analysis of p53 upregulation by v1, v9, H11LpA, a

(F) qRT-PCR analysis measuring upregulation of p53 target genes (BAX, p21, G

western blots for BAX and p21 are reported on the right (the endogenous sig

quantification).

(E and F) Error bars indicate SEM of 2 biological replicas, each performed in tech

images were manually joined because they were separated from each other in th

control (CTRL) based on one-way ANOVA statistical tests in GraphPad (*p % 0.0

(G) RNA immunoprecipitation using the DO1 anti-p53 antibody for cells transfec

globulin G (IgG) produced negligible amplification and are not plotted. Values are r

performed in technical duplicates. Asterisks indicate significant variations in the a

to the target RNA (v1, H11LpA, or DINO) based on unpaired parametric t tests in

(H) Pull-down of p53 (detected by western blot) using in vitro-transcribed and bioti

percent of input. Error bars indicate SEM of 3 biological replicas. Asterisks indic

CTRL based on one-way ANOVA statistical tests in GraphPad (*p % 0.05, **p %
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SHAPE maps despite being single stranded (Figures S1 and

S3). However, by performing SHAPE on the H11LpA mutant,

we noticed that this motif becomes highly reactive, whereas

the reactivity of all other structural regions except H25–H29 re-

mains nearly unchanged (Figure 5A). Considering these differ-

ences in in vitro SHAPE reactivity and the fact that, in the cell,

D2 can stimulate the p53 pathway in trans with DD2 (Figure 4A),

we hypothesized that MEG3 may adopt a higher-order structure

in which H11 is constrained by intramolecular long-range tertiary

interactions.

To address this hypothesis, we first analyzed the folding

behavior of v1 and H11LpA in solution by analytical ultracentrifu-

gation (AUC). Strikingly, these two constructs, which differ by only

6 of 1,595 nt, display the same hydration radius (Rh) at Mg2+ con-

centrations below the CMg1/2, but above the CMg1/2, the mutant

compacts up to 8% less than the wild type (Figure 5B).

Having establishedbyAUC thatMEG3 folding in vitro is specific,

we performed hydroxyl radical footprinting (HRF). We found that

theD2-D3coreof v1displaysa solvent accessibility pattern typical

of highly structured RNAs, with solvent-protected regions flanked

by highly solvent-exposed residues (Figures 5C, S6A, and S6B).

The number of solvent-protected nucleotides in MEG3 is propor-

tional to that of other highly structured large RNAs (Figure S6C).

These observations suggest that MEG3 folds in a specific confor-

mation in vitro. Moreover, HRF analysis of H11LpA revealed that

both the GUGAG motif and the H25–H29 motif, which display

increased SHAPE reactivity (see above and Figure 5A), also

become significantlymore solvent-exposed than in v1 (Figure 5D).

Curiously, nt 857–885 in H25–H29 (30 side of H27) comprise a

conspicuous series of 6 tandem repeats (TR1–TR6) with se-

quences complementary to theGUGAGmotif in H11, suggesting

that H11 and H27 could base pair with each other to form long-

range pseudoknot structures (kissing loops; Figure 2). Impor-

tantly, the potential to form H11–H27 pseudoknots is conserved

in evolution because all mammalian sequences where we could

identify MEG3 possess at least three such tandem repeats (Fig-

ure 2; Table S2). To test whether the putative H11–H27 pseudo-

knots actually form in vivo and are functionally relevant, we

used the functionally impaired G370C mutant and introduced a
nts, individual exons, and domains (A); on D2-D3 mutants (B); and on selected

0,000-fold less expressed than v1. Expression levels of all other constructs are

s indicate a significant difference in relative luciferase signal with respect to v1

***p % 0.001, and ****p % 0.0001).

orresponding compensatory mutations (H11-comp, green nucleotides).

nd G370C.

ADD45A, GDF15, and NOXA) by v1, v9, H11LpA, and G370C. Representative

nal for GADD45A, GDF15, and NOXA is too low in our system for accurate

nical triplicates, and the black line indicates that the right and left parts of the

e raw image of the blot. Asterisks indicate significant variation with respect to

5, **p % 0.01, ***p % 0.001, and ****p % 0.0001).

ted with the indicated constructs. Control samples using unspecific immuno-

eported as percent input. Error bars indicate SEM of 4 biological replicas, each

mounts of immunoprecipitated control RNAs (GAPDH and RNR1) with respect

GraphPad (*p % 0.05, **p % 0.01, ***p % 0.001, and ****p % 0.0001).

nylated v1 and H11LpA and non-biotinylated v1 (CTRL). Values are reported as

ate significant variation of p53 pulled down by v1 and H11LpA with respect to

0.01, ***p % 0.001, and ****p % 0.0001).



Figure 5. Structural and Functional Inter-

connections between H11 and H27

(A) SHAPE (1M7) reactivity values of individual

nucleotides in H11 and H27 from compact v1 (from

Figures S1–S3) and H11LpA.

(B) Difference in hydration radius (DRh) between v1

and H11LpA at increasing Mg2+ concentrations, as

measured by AUC (the vertical dotted line in-

dicates the CMg1/2 of v1 from Table S1).

(C) Secondary structure map of compact v1 color-

coded according to the HRF reactivity values of

individual nucleotides. HRF analysis and normali-

zation procedures are described in the STAR

Methods.

(D) HRF reactivity values of individual nucleotides

in H11 and H27 from compact v1 (from C) and

H11LpA in K+ and Mg2+. Reactivity values of

H11LpA were normalized to the reactivity values of

v1 following the scaling procedure of QuSHAPE,

as described previously (Karabiber et al., 2013).

Raw reactivity plots and correlations between

replicas are reported in Figure S6.

(E) p53-dependent luciferase assay (p53Luc and

pGL-MDM2 reporters) on G370C and compensa-

tory double mutants.

Error bars in (A) and (C)–(E) indicate SEM of 3 ex-

periments. Asterisks indicate significant variation

in relative luciferase signal with respect to the

G370C single mutant (Figure 4C) based on one-way

ANOVA statistical tests in GraphPad (*p % 0.05,

**p % 0.01, ***p % 0.001, and ****p % 0.0001).
compensatory point mutation within each H27 TR. We tested all

six resulting double mutants by luciferase assay using both the

p53Luc and the pGL-MDM2 reporter. Strikingly, all double mu-

tants except G370C/U864G (H11/TR2) partially rescued activity

on at least one reporter. Interestingly, the extent of rescue de-

pends on the TR concerned: G370C/U869G (H11/TR3) was the

most efficient compensatory mutant on both p53Luc and the

pGL-MDM2 reporters, G370C/U873G (H11/TR4) rescued activity

only on p53Luc but not on pGL-MDM2, and G370C/U882G

(H11/TR6) rescued activity only on pGL-MDM2 but not on

p53Luc (Figure 5E).

Taken together, our data show that H11 and H27 are structur-

ally connected in vitro because mutations on H11 affect the sec-
Molecula
ondary and tertiary structures of H27 (Fig-

ures 5A and 5D). Moreover, in vivo, H11

and H27 are both required for stimulation

of the p53 pathway (Figure 4B) and form

functionally important base-pairing inter-

actions because inactive H11 mutants

can be rescued by compensatory H27

mutations (Figure 5E).

The Functional H11–H27
Pseudoknots Are Required for
Compaction of MEG3 In Vitro

Having established that MEG3 compacts

in a specific manner in vitro and that it

forms a functionally important pseudo-
knot in vitro and in vivo, we attempted to visualize this lncRNA

by single-particle 3D imaging. For our study, we used atomic

force microscopy (AFM), a technique used previously to image

other multi-domain structured RNAs and tomonitor RNA confor-

mational changes (Garcı́a-Sacristán et al., 2015; Giro et al., 2004;

Hansma et al., 1996; Lyubchenko et al., 2011; Schön, 2016; Yu

et al., 2015).

We visualized v1 in three different folding states (Figures 6 and

S7A; Table S1). In the presence of formamide, which denatures

RNA, v1 forms elongated unstructured filaments, as expected.

In the presence of K+ ions, which induce RNA to form secondary

but not tertiary structure motifs, v1 particles become shorter and

taller, forming globular domains connected by flexible linkers.
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Figure 6. In Vitro Single-Particle Analysis of v1

Shown are representative AFM particles of v1, poly(A) RNA, and group II intron (GIIi) in formamide (denatured state), K+ (intermediate state), and K+ and Mg2+

(compact state). A representative particle of H11LpA in K+ and Mg2+ is reported at the top right. Each particle is displayed in 2D and 3D representations. The xy

scale bars are on the right for eachmolecule, and the z color scale bar is common to all samples. The bottom right panel shows PSDplots from images acquired at

1,024 3 1,024 pixel2 with a pixel size of 0.98 nm/pixel for v1 in the denatured, intermediate, and compact states and of H11LpA in K+ and Mg2+. We obtained

similar PSD plots for images acquired at 512 3 512 pixel2 with a pixel size of 1.96 nm/pixel. Intercepts between linear fits to autoaffine regions in the spectra

(dashed lines) indicate characteristic spatial frequencies. Error bars indicate SEM. We imaged �100–110 particles in total per condition (see STAR Methods for

details). The AFM processing pipeline and raw scan are reported in Figure S7.
Power spectral density (PSD) analysis, which provides an over-

viewof the spatial features present in images (Calò et al., 2009; Hi-

guchi, 1988), reveals two characteristic peaks. One peak likely

corresponds to the globular domains of v1 (average size of

30 nm) and the second peak to the entire v1 (�85 nm), in line

with dimensions measured in solution by small-angle X-ray scat-

tering (SAXS; maximum particle size [Dmax],�70 nm; Figure S7B;

Table S1). Finally, in the presence of K+ and Mg2+, which induce

RNA tertiary folding (Su et al., 2005; Wadley et al., 2007; Wood-

son, 2005, 2010), v1 particles become even shorter and taller

than with K+ and lose their multi-domain organization to adopt

an overall compact shape. Correspondingly, the PSD spectrum

becomes steeper and loses the 30-nm shoulder. The intercept

with the low-frequency plateau is now at �65 nm, suggesting a

degree of compaction (�25%) similar to that observed in solution

by AUC (�20%; Figure S7C; Table S1). The folding behavior

observed for v1 differs from that of low-complexity RNAs, such

as poly(A) RNA homopolymers, and is similar to that of highly

structured RNAs, like the Oceanobacillus iheyensis group II intron

(Figure 6). Furthermore, we also imaged the H11LpA mutant in K+

and Mg2+. This mutant displays a dramatic defect in compaction.

PSD analysis shows emergence of an inflection point at�40 nm in

the mutant, more closely resembling the intermediate than the

compact state of v1 (Figures 6 and S7A).

In summary, our AFM analysis, supported by our highly corre-

lated biochemical, biophysical, and functional characterization

in vitro and in vivo, reveals that MEG3 folding is dictated by the

formation of evolutionarily conserved and functionally important

pseudoknots between H11 and H27.
990 Molecular Cell 75, 982–995, September 5, 2019
DISCUSSION

Alternative Splicing Dictates Structural Organization in
lncRNA MEG3
In this work, we characterized the secondary and tertiary struc-

tures of MEG3, a human lncRNA that functions as a tumor sup-

pressor by stimulating the p53 pathway.

Our secondary structure maps of three MEG3 splice variants

show that MEG3 forms highly structured domains, displaying

Shannon entropy and SHAPE reactivity values comparable

with highly structured RNAs (Mathews, 2004; Figures 1G,

S1–S4, and S6C). The boundaries between structural domains

define exon E3 as an independent module comprising domains

D2 and D3 (Figures S1–S4). Correspondence between exon

junctions and domain boundaries have been observed previ-

ously for another lncRNA, BRAVEHEART (Xue et al., 2016), but

not for HOTAIR (Somarowthu et al., 2015) or XIST (Smola

et al., 2016). For MEG3, which possesses at least 27 splice

variants exhibiting different levels of p53 stimulation, such

correspondence is remarkable and provides support for the pre-

viously proposed correlation between MEG3 exonic organiza-

tion, structural architecture, and ability to stimulate the p53

pathway (Zhang et al., 2010b). D2 and D3 likely adopt a similar

secondary structure across human MEG3 splicing variants (Fig-

ure S1) because they have similar chemical reactivity in different

cell lines (endogenous and transfected; Figure 1F) and a distinct

solvent protection pattern in vitro (Figure 5C). Importantly,

we could identify D2-D3 (E3) in early-diverging mammals

such as Marsupialia (i.e., Tasmanian devil; Data S1; Table S2),



Figure 7. Model for MEG3-Dependent Stimulation of the p53 Pathway

A long-range interaction (kissing loops) between the H11 and H27 motifs is necessary to activate lncRNA MEG3. Active MEG3 upregulates p53 and p53 target

genes. The resulting effect of such stimulation of the p53 pathway is cell cycle arrest at the G1/S checkpoint and/or apoptosis, depending on the cell type (a

sketch of an apoptotic cell is shown on the right).
suggesting that this lncRNA originated at least 200 million years

ago, subsequent to the gene duplication event involving the p53/

p63/p73 ancestor that gave rise to p53 �400 million years ago

(Belyi et al., 2010). It is possible that, in early-diverging mammals

(Marsupialia, Afrotheria, and Xenarthra) that seem to lack E1, E2,

and E10–E12, the MEG3 sequence is too divergent to be identi-

fied with current algorithms. Alternatively, in those organisms,

MEG3 may have actually been composed of E3 only, and other

exonsmay have been acquired later in evolution to confer further

specificity and/or additional functional roles to MEG3.

Conserved Nucleotides and Structured Motifs in the
MEG3 Core Are Essential for Stimulation of the p53
Pathway
Our work also dissects the functional contribution of each struc-

tural domain of MEG3 to an exquisite and unprecedented level of

detail. Although previous studies have identified specific func-

tional motifs in lncRNAs, such as the asymmetric G-rich internal

loop (AGIL) of BRAVEHEART that mediates cardiac specification

in mice (Xue et al., 2016) or repeat stem-loop structures of roX

that mediate dosage compensation in Drosophila (Ilik et al.,

2013), the complexity of phenotypic assays has so far prevented

systematic functional probing of lncRNA secondary structures.

In our work, we unearthed not only the functional importance

of macroscopic structural motifs (i.e., entire domains or stem-

loop structures) but also of individual nucleotides in H11 (D2)

and H27 (D3), revealing that point mutations in the 1,595-nt-

long MEG3 can dramatically alter the ability of this lncRNA to

stimulate the p53 pathway and regulate the cell cycle (Figures

4B and 4C).

Our comparative qRT-PCR, western blot, luciferase, and flow

cytometry data on three human MEG3 splicing variants (v1, v3,

and v9) and their structural mutants, in line with previous litera-

ture reports (Zhang et al., 2003, 2010b; Zhou et al., 2007,

2012; Zhu et al., 2015), suggest that p53 stimulation by MEG3
occurs via at least two different mechanisms (Figure 7): (1) stim-

ulation of p53 expression (Figure 4E) and (2) upregulation of p53

target genes (Figure 4F). Although this latter effect is necessarily

partly induced by the increased levels of p53, MEG3 seems to

also participate directly in the upregulation of p53 target genes

because splice variants and mutants display selectivity on

different p53REs (Figures 3K and 5E) and because, in our sys-

tem, MEG3 arrests the cell cycle but does not induce apoptosis

(Figures 3A–3C and 3F–3H, respectively). As proposed previ-

ously (Zhou et al., 2007; Zhu et al., 2015), and in analogy with

other lncRNAs like DINO (Schmitt et al., 2016), these direct ef-

fects of MEG3 on p53 target gene expression may be due to

direct binding of MEG3 to p53 protein (Figures 4G and 4H), but

p53-RNA interactions must be interpreted with caution because

they are likely promiscuous (Riley and Maher, 2007).

Key MEG3 Functional Motifs Form Intramolecular Long-
Range Interactions, Not Protein-Binding Hubs
Even more remarkably, our functional, evolutionary, and

biochemical data show that H11 and H27 are structurally con-

nected via functionally important long-range tertiary interactions.

Previous studies had revealed the potential for lncRNAs to form

long-range tertiary interactions, such as duplexes in the A-re-

peats of human XIST (Lu et al., 2016) or long-range in vitro cross-

links in mouse RepA (Liu et al., 2017). However, the formation

and physiological relevance of long-range tertiary interactions

in lncRNAs had not yet been functionally validated. In our

work, compensatory mutagenesis coupled to cellular assays

revealed that the intramolecular pseudoknots (kissing loops) be-

tween H11 and the H27 TRs, which are located �500 nt apart,

are essential for function (Figures 2 and 5E). TR3 seems to be

the preferred interaction partner of H11 because it is single-

stranded in all three MEG3 variants (Figure S1). Moreover,

U869G in TR3 is the most efficient compensatory mutation in

rescuing activity of the G370C mutant (Figure 5E). However, all
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MEG3 sequences that we identified inmammals possess at least

3 of the 6 TRs that characterize human MEG3, and covariation

analyses reveal that the interaction of these TRswith the H11 ter-

minal loop is conserved in evolution (Figure 2; Table S2). Addi-

tionally, compensatory mutagenesis on TR1, TR4, TR5, and

TR6 in human MEG3 can also partly rescue activity of the

G370Cmutant, at least on certain target genes (Figure 5E). These

findings suggest that H11 likely interacts with different H27 TRs,

forming multiple alternative and mutually exclusive conforma-

tions. Such redundancy is reminiscent of the redundancy

observed in protein repeats (Andrade et al., 2001) and may be

functionally important. While in proteins, internal repetition con-

fers the advantage of creating larger binding surface areas for

cofactors (Andrade et al., 2001), for MEG3, the alternative

interactions between H11 and H27 may generate slightly

different structure motifs to fine-tune p53 stimulation on different

target genes.

Independent of how the different H11–H27 pseudoknots

exactly modulate the MEG3 structure, our cellular and biochem-

ical data establish that these motifs behave very differently from

other typical lncRNA functional motifs studied to date. For

instance, HOTAIR domains 1 and 4 interact with PRC2 and

LSD1, respectively (Somarowthu et al., 2015), the AGIL motif in

lncRNA BRAVEHEART interacts with protein CNBP (Xue et al.,

2016), the roX tandem repeats interact with MLE and MSL2

(Ilik et al., 2013), and the XIST repeat A duplexes interact with

SPEN (Lu et al., 2016). In contrast, the MEG3 H11–H27 kissing

loops form a bona fide intramolecular interaction, not a pro-

tein-binding site (Figures 1F and 4G and 4H).

MEG3 Mutants that Lose Function In Vivo Display
Folding Defects In Vitro

Despite H11–H27 likely not being direct protein-binding sites,

MEG3 does work in association with proteins (Liu et al., 2015;

Sherpa et al., 2018; Zhu et al., 2015), and its structure is inevi-

tably modulated by protein binding in the cell. Our in vivo/

ex vivo SHAPE data reveal the specific regions where protein-

binding sites localize in the MEG3 structure. These regions

involve functionally important motifs, such as H16–H24 (D3)

and the variable D4 and D5. Although identification of the exact

protein partners of MEG3 goes beyond the scopes of this work,

our data constitute important premises for systematic interac-

tome studies, such as hybridization capture assays used previ-

ously for other lncRNAs (Chu and Chang, 2016; Simon, 2013).

In our work, we limited our analysis to the characterization of

the MEG3 core because our identification of the H11–H27

long-range pairing directed us to analyze this intramolecular

interaction systematically using an integrative in vitro/in vivo

approach that combines compensatorymutagenesis with evolu-

tionary, structural, and functional assays. Proving the functional

importance of the H11–H27 pseudoknot confirms what had so

far remained a speculative molecular mechanism assigned to

lncRNAs: tertiary structure motifs can guide lncRNA function

(Diederichs, 2014; Novikova et al., 2012a). Moreover, establish-

ing the functional relevance of the H11–H27 long-range tertiary

interaction in vivo opened up theway for exploring the in vitro ter-

tiary structure of MEG3 using in-solution and single-particle im-

aging techniques that have never been employed before for
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lncRNAs. Remarkably, minimal mutations in functionally relevant

MEG3 motifs induce pronounced differences in the hydrody-

namic properties of this lncRNA (DRh, �8% between v1 and

H11LpA; Figure 5B), and such folding defects also emerge by

chemical probing and AFM (Figures 5A, 5D, and 6). Although it

remains to be established whether the MEG3 structure is equally

compact in vivo as in vitro, our data show that the functionally

important H11–H27 pseudoknots guide MEG3 folding in vitro.

Such observation makes it tempting to speculate that MEG3

folding serves to spatially organize theMEG3 functional domains

in the cell for correct orientation of its partner proteins and for

proper modulation of gene expression.

Although the precise cascade of events that lead to MEG3-

dependent stimulation of the p53 response remains to be eluci-

dated, our data surprisingly show that MEG3 must specifically

preserve the structural interaction between H11 and H27 for

p53 stimulation (Figure 7). Because MEG3-dependent p53 stim-

ulation contributes to the prevention of tumors, in which p53 is

mostly expressed in its active, wild-type form (Cheunsuchon

et al., 2011; Ellison et al., 1995; Levy et al., 1994; Nagashima

et al., 1999; Suliman et al., 2001; Zhou et al., 2012) (i.e., pituitary

adenoma; prevalence rate of�15%; Ezzat et al., 2004; or menin-

gioma;�30% of all primary brain and central nervous system tu-

mors; Wiemels et al., 2010), stabilizing the H11–H27 structure

may become a powerful therapeutic approach to potentiate

the p53 response and bypass the need of invasive intracranial

surgery. Screening for structure-disrupting mutations in the

MEG3 gene, particularly in the two key functional motifs H11

and H27, may also serve as a useful biomarker for identifying pa-

tients with increased cancer susceptibility. More generally, the

fact that structure-function relationships for MEG3 can be

dissected with high precision, even by point mutations, raises

the prospect of gaining considerable mechanistic insights into

the function and 3D architecture of many other lncRNAs through

analogous studies.
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Marı́n-Béjar, O., and Huarte, M. (2015). RNA pulldown protocol for in vitro

detection and identification of RNA-associated proteins. Methods Mol. Biol.

1206, 87–95.

Mathews, D.H. (2004). Using an RNA secondary structure partition function to

determine confidence in base pairs predicted by free energy minimization.

RNA 10, 1178–1190.

McMurray, E.N., and Schmidt, J.V. (2012). Identification of imprinting regula-

tors at the Meg3 differentially methylated region. Genomics 100, 184–194.

Menendez, D., Inga, A., and Resnick, M.A. (2010). Estrogen receptor acting in

cis enhances WT and mutant p53 transactivation at canonical and noncanon-

ical p53 target sequences. Proc. Natl. Acad. Sci. USA 107, 1500–1505.

Mercer, T.R., Dinger, M.E., Sunkin, S.M., Mehler, M.F., and Mattick, J.S.

(2008). Specific expression of long noncoding RNAs in the mouse brain.

Proc. Natl. Acad. Sci. USA 105, 716–721.

Mercer, T.R., Dinger, M.E., and Mattick, J.S. (2009). Long non-coding RNAs:

insights into functions. Nat. Rev. Genet. 10, 155–159.

Miyoshi, N., Wagatsuma, H., Wakana, S., Shiroishi, T., Nomura, M., Aisaka, K.,

Kohda, T., Surani, M.A., Kaneko-Ishino, T., and Ishino, F. (2000). Identification

of an imprinted gene, Meg3/Gtl2 and its human homologue MEG3, first map-

ped on mouse distal chromosome 12 and human chromosome 14q. Genes

Cells 5, 211–220.

Mondal, T., Subhash, S., Vaid, R., Enroth, S., Uday, S., Reinius, B., Mitra, S.,

Mohammed, A., James, A.R., Hoberg, E., et al. (2015). MEG3 long noncoding

RNA regulates the TGF-b pathway genes through formation of RNA-DNA

triplex structures. Nat. Commun. 6, 7743.

Nagashima, G., Aoyagi, M., Yamamoto, M., Yamamoto, S., Wakimoto, H.,

Ohno, K., Yamamoto, K., and Hirakawa, K. (1999). P53 overexpression and

proliferative potential in malignant meningiomas. Acta Neurochir. (Wien) 141,

53–61, discussion 60–61.

Nawrocki, E.P., and Eddy, S.R. (2013). Infernal 1.1: 100-fold faster RNA homol-

ogy searches. Bioinformatics 29, 2933–2935.

Necas, D., and Klapetek, P. (2012). Gwyddion: an open-source software for

SPM data analysis. Cent. Eur. J. Phys. 10, 181–188.

Necsulea, A., Soumillon, M., Warnefors, M., Liechti, A., Daish, T., Zeller, U.,

Baker, J.C., Gr€utzner, F., and Kaessmann, H. (2014). The evolution of

lncRNA repertoires and expression patterns in tetrapods. Nature 505,

635–640.

Novikova, I.V., Hennelly, S.P., and Sanbonmatsu, K.Y. (2012a). Sizing up long

non-coding RNAs: do lncRNAs have secondary and tertiary structure?

Bioarchitecture 2, 189–199.

Novikova, I.V., Hennelly, S.P., and Sanbonmatsu, K.Y. (2012b). Structural ar-

chitecture of the human long non-coding RNA, steroid receptor RNA activator.

Nucleic Acids Res. 40, 5034–5051.

Patel, T.R., Chojnowski, G., Astha, Koul, A., McKenna, S.A., and Bujnicki, J.M.

(2017). Structural studies of RNA-protein complexes: A hybrid approach

involving hydrodynamics, scattering, and computational methods. Methods

118-119, 146–162.

Petoukhov, M.V., Franke, D., Shkumatov, A.V., Tria, G., Kikhney, A.G., Gajda,

M., Gorba, C., Mertens, H.D., Konarev, P.V., and Svergun, D.I. (2012). New de-

velopments in the ATSAS program package for small-angle scattering data

analysis. J. Appl. Cryst. 45, 342–350.

Pfaffl, M.W. (2001). A new mathematical model for relative quantification in

real-time RT-PCR. Nucleic Acids Res. 29, e45.

Reuter, J.S., and Mathews, D.H. (2010). RNAstructure: software for RNA sec-

ondary structure prediction and analysis. BMC Bioinformatics 11, 129.

Rice, G.M., Leonard, C.W., and Weeks, K.M. (2014). RNA secondary structure

modeling at consistent high accuracy using differential SHAPE. RNA 20,

846–854.

Riley, K.J., and Maher, L.J., 3rd (2007). p53 RNA interactions: new clues in an

old mystery. RNA 13, 1825–1833.

http://refhub.elsevier.com/S1097-2765(19)30563-5/sref18
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref18
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref19
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref19
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref19
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref20
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref20
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref20
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref21
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref21
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref21
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref22
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref22
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref23
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref23
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref23
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref23
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref24
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref24
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref24
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref25
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref25
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref25
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref26
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref26
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref26
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref27
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref27
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref27
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref28
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref28
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref28
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref29
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref29
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref30
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref30
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref31
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref31
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref32
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref32
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref32
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref33
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref33
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref33
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref34
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref34
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref34
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref34
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref35
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref35
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref36
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref36
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref36
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref37
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref37
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref37
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref37
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref38
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref38
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref39
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref39
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref40
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref40
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref40
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref41
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref41
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref41
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref42
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref42
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref43
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref43
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref43
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref44
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref44
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref44
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref45
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref45
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref46
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref46
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref46
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref46
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref46
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref47
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref47
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref47
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref47
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref48
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref48
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref48
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref48
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref49
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref49
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref50
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref50
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref51
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref51
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref51
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref51
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref51
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref52
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref52
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref52
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref53
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref53
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref53
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref54
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref54
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref54
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref54
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref55
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref55
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref55
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref55
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref56
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref56
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref57
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref57
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref58
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref58
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref58
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref59
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref59


Rivas, E., Clements, J., and Eddy, S.R. (2017). A statistical test for conserved

RNA structure shows lack of evidence for structure in lncRNAs. Nat. Methods

14, 45–48.

Sauvageau, M., Goff, L.A., Lodato, S., Bonev, B., Groff, A.F., Gerhardinger, C.,

Sanchez-Gomez, D.B., Hacisuleyman, E., Li, E., Spence, M., et al. (2013).

Multiple knockout mouse models reveal lincRNAs are required for life and

brain development. eLife 2, e01749.

Schmitt, A.M., Garcia, J.T., Hung, T., Flynn, R.A., Shen, Y., Qu, K., Payumo,

A.Y., Peres-da-Silva, A., Broz, D.K., Baum, R., et al. (2016). An inducible

long noncoding RNA amplifies DNA damage signaling. Nat. Genet. 48,

1370–1376.

Schön, P. (2016). Imaging and force probing RNA by atomic forcemicroscopy.

Methods 103, 25–33.

Schuck, P. (2000). Size-distribution analysis of macromolecules by sedimen-

tation velocity ultracentrifugation and lamm equation modeling. Biophys. J.

78, 1606–1619.

Sherpa, C., Rausch, J.W., and Le Grice, S.F.J. (2018). Structural characteriza-

tion of maternally expressed gene 3 RNA reveals conserved motifs and poten-

tial sites of interaction with polycomb repressive complex 2. Nucleic Acids

Res. 46, 10432–10447.

Siegfried, N.A., Busan, S., Rice, G.M., Nelson, J.A., and Weeks, K.M. (2014).

RNA motif discovery by SHAPE and mutational profiling (SHAPE-MaP). Nat.

Methods 11, 959–965.

Simon, M.D. (2013). Capture hybridization analysis of RNA targets (CHART).

Curr. Protoc. Mol. Biol. Chapter 21, Unit 21.25.

Smola, M.J., Calabrese, J.M., and Weeks, K.M. (2015a). Detection of RNA-

protein interactions in living cells with SHAPE. Biochemistry 54, 6867–6875.

Smola, M.J., Rice, G.M., Busan, S., Siegfried, N.A., and Weeks, K.M. (2015b).

Selective 20-hydroxyl acylation analyzed by primer extension and mutational

profiling (SHAPE-MaP) for direct, versatile and accurate RNA structure anal-

ysis. Nat. Protoc. 10, 1643–1669.

Smola, M.J., Christy, T.W., Inoue, K., Nicholson, C.O., Friedersdorf, M., Keene,

J.D., Lee, D.M., Calabrese, J.M., andWeeks, K.M. (2016). SHAPE reveals tran-

script-wide interactions, complex structural domains, and protein interactions

across the Xist lncRNA in living cells. Proc. Natl. Acad. Sci. USA 113,

10322–10327.

Somarowthu, S., Legiewicz, M., Chillón, I., Marcia, M., Liu, F., and Pyle, A.M.

(2015). HOTAIR forms an intricate and modular secondary structure. Mol. Cell

58, 353–361.

Su, L.J., Waldsich, C., and Pyle, A.M. (2005). An obligate intermediate along

the slow folding pathway of a group II intron ribozyme. Nucleic Acids Res.

33, 6674–6687.

Suliman, M., Royds, J., Cullen, D., Timperley,W., Powell, T., Battersby, R., and

Jones, T.H. (2001). Mdm2 and the p53 pathway in human pituitary adenomas.

Clin. Endocrinol. (Oxf.) 54, 317–325.

Swisher, J., Duarte, C.M., Su, L.J., and Pyle, A.M. (2001). Visualizing the sol-

vent-inaccessible core of a group II intron ribozyme. EMBO J. 20, 2051–2061.

Tarver, J.E., Dos Reis, M., Mirarab, S., Moran, R.J., Parker, S., O’Reilly, J.E.,

King, B.L., O’Connell, M.J., Asher, R.J., Warnow, T., et al. (2016). The interre-

lationships of placental mammals and the limits of phylogenetic inference.

Genome Biol. Evol. 8, 330–344.
Tavares, R.C.A., Pyle, A.M., and Somarowthu, S. (2019). Phylogenetic Analysis

with Improved Parameters Reveals Conservation in lncRNA Structures. J. Mol.

Biol. 431, 1592–1603.

Volders, P.J., Helsens, K., Wang, X., Menten, B., Martens, L., Gevaert, K.,

Vandesompele, J., and Mestdagh, P. (2013). LNCipedia: a database for anno-

tated human lncRNA transcript sequences and structures. Nucleic Acids Res.

41, D246–D251.

Wadley, L.M., Keating, K.S., Duarte, C.M., and Pyle, A.M. (2007). Evaluating

and learning from RNA pseudotorsional space: quantitative validation of a

reduced representation for RNA structure. J. Mol. Biol. 372, 942–957.

Wapinski, O., and Chang, H.Y. (2011). Long noncoding RNAs and human dis-

ease. Trends Cell Biol. 21, 354–361.

Weinberg, Z., and Breaker, R.R. (2011). R2R–software to speed the depiction

of aesthetic consensus RNA secondary structures. BMC Bioinformatics 12, 3.

Wiemels, J., Wrensch, M., and Claus, E.B. (2010). Epidemiology and etiology

of meningioma. J. Neurooncol. 99, 307–314.

Wilkinson, K.A., Merino, E.J., and Weeks, K.M. (2006). Selective 20-hydroxyl
acylation analyzed by primer extension (SHAPE): quantitative RNA structure

analysis at single nucleotide resolution. Nat. Protoc. 1, 1610–1616.

Woodson, S.A. (2005). Metal ions and RNA folding: a highly charged topic with

a dynamic future. Curr. Opin. Chem. Biol. 9, 104–109.

Woodson, S.A. (2010). Compact intermediates in RNA folding. Annu. Rev.

Biophys. 39, 61–77.

Xue, Z., Hennelly, S., Doyle, B., Gulati, A.A., Novikova, I.V., Sanbonmatsu,

K.Y., and Boyer, L.A. (2016). A G-Rich motif in the lncRNA Braveheart interacts

with a zinc-finger transcription factor to specify the cardiovascular lineage.

Mol. Cell 64, 37–50.

Yu, J., Liu, Z., Jiang, W., Wang, G., and Mao, C. (2015). De novo design of an

RNA tile that self-assembles into a homo-octameric nanoprism. Nat.

Commun. 6, 5724.

Zhang, X., Zhou, Y., Mehta, K.R., Danila, D.C., Scolavino, S., Johnson, S.R.,

and Klibanski, A. (2003). A pituitary-derived MEG3 isoform functions as a

growth suppressor in tumor cells. J. Clin. Endocrinol. Metab. 88, 5119–5126.

Zhang, X., Gejman, R., Mahta, A., Zhong, Y., Rice, K.A., Zhou, Y.,

Cheunsuchon, P., Louis, D.N., and Klibanski, A. (2010a). Maternally expressed

gene 3, an imprinted noncoding RNA gene, is associated with meningioma

pathogenesis and progression. Cancer Res. 70, 2350–2358.

Zhang, X., Rice, K., Wang, Y., Chen, W., Zhong, Y., Nakayama, Y., Zhou, Y.,

and Klibanski, A. (2010b). Maternally expressed gene 3 (MEG3) noncoding ri-

bonucleic acid: isoform structure, expression, and functions. Endocrinology

151, 939–947.

Zhou, Y., Zhong, Y., Wang, Y., Zhang, X., Batista, D.L., Gejman, R., Ansell,

P.J., Zhao, J., Weng, C., and Klibanski, A. (2007). Activation of p53 by

MEG3 non-coding RNA. J. Biol. Chem. 282, 24731–24742.

Zhou, Y., Zhang, X., and Klibanski, A. (2012). MEG3 noncoding RNA: a tumor

suppressor. J. Mol. Endocrinol. 48, R45–R53.

Zhou, K.I., Liu, N., and Pan, T. (2017). Identification of N6-methyladenosine

reader proteins. Methods 126, 105–111.

Zhu, J., Liu, S., Ye, F., Shen, Y., Tie, Y., Zhu, J., Wei, L., Jin, Y., Fu, H., Wu, Y.,

and Zheng, X. (2015). Long noncoding RNA MEG3 interacts with p53 protein

and regulates partial p53 target genes in hepatoma cells. PLoS ONE 10,

e0139790.
Molecular Cell 75, 982–995, September 5, 2019 995

http://refhub.elsevier.com/S1097-2765(19)30563-5/sref60
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref60
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref60
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref61
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref61
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref61
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref61
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref62
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref62
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref62
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref62
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref63
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref63
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref64
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref64
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref64
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref65
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref65
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref65
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref65
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref66
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref66
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref66
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref67
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref67
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref68
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref68
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref69
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref69
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref69
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref69
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref69
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref70
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref70
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref70
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref70
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref70
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref71
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref71
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref71
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref72
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref72
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref72
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref73
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref73
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref73
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref74
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref74
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref75
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref75
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref75
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref75
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref76
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref76
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref76
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref77
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref77
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref77
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref77
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref78
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref78
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref78
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref79
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref79
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref80
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref80
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref81
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref81
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref82
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref82
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref82
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref82
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref83
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref83
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref84
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref84
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref85
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref85
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref85
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref85
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref86
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref86
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref86
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref87
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref87
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref87
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref88
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref88
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref88
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref88
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref89
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref89
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref89
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref89
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref90
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref90
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref90
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref91
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref91
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref92
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref92
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref92
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref93
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref93
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref93
http://refhub.elsevier.com/S1097-2765(19)30563-5/sref93


STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

anti BAX (D2D) Mouse IgG1 antibody Santa Cruz Biotechnology,

Inc. (Texas, USA)

Cat#sc-20067; RRID: AB_626726

anti p21 (187) Mouse IgG1 antibody Santa Cruz Biotechnology,

Inc. (Texas, USA)

Cat#sc-817; RRID: AB_628072

anti p53 (DO-1) Mouse IgG2a antibody Santa Cruz Biotechnology,

Inc. (Texas, USA)

Cat#sc-126; RRID: AB_628082

anti actin Rabbit IgG antibody Abcam (UK) Cat#ab1801; RRID: AB_302617

anti mouse IgG1 Alexa Fluor 647 (goat IgG) Thermo Fisher Scientific

(Massachusetts, USA)

Cat#A-21240; RRID: AB141658

anti mouse IgG (H+L) Alexa Fluor 647 (goat IgG) Thermo Fisher Scientific

(Massachusetts, USA)

Cat#A-32728; RRID: AB_2633277

anti rabbit IgG Alexa Fluor 488 (goat IgG) Thermo Fisher Scientific

(Massachusetts, USA)

Cat#A-32731; RRID: AB_2633280

Bacterial and Virus Strains

E. coli Mach1 competent cells Thermo Fisher Scientific

(Massachusetts, USA)

Cat#C862003

Chemicals, Peptides, and Recombinant Proteins

XbaI restriction enzyme New England Biolabs

(Massachusetts, USA)

Cat#R0145S

SacI restriction enzyme New England Biolabs

(Massachusetts, USA)

Cat#R3156S

NotI restriction enzyme New England Biolabs

(Massachusetts, USA)

Cat#R3189S

KpnI restriction enzyme New England Biolabs

(Massachusetts, USA)

Cat#R3142S

Turbo DNase Thermo Fisher Scientific

(Massachusetts, USA)

Cat#AM2238

Proteinase K Thermo Fisher Scientific

(Massachusetts, USA)

Cat#17916

1-methyl-7-nitroisatoic anhydride (1M7) in house synthesis at the EMBL

Chemical Biology Facility

(Heidelberg, Germany)

not available

1-methyl-6-nitroisatoic anhydride (1M6) Sigma Aldrich (France) Cat#S888079-250MG

N-methylisatoic anhydride (NMIA) Sigma Aldrich (France) Cat#129887-100G

dimethyl sulfate (DMS) Sigma Aldrich (France) Cat#D186309

5(6)-FAM, SE Tebu-bio (France) Cat#AS-81006

6-JOE, SE Tebu-bio (France) Cat#AS-81011

McCoy’s 5a medium modified Thermo Fisher Scientific

(Massachusetts, USA)

Cat#26600080

Minimum Essential Medium Eagle Sigma Aldrich (France) Cat#51416C-1000ML

RNeasy Mini Kit QIAGEN (France) Cat#74104

Zymogen RNA clean and concentrator kit Zymo Research (California, USA) Cat#R1019

RNA 6000 Nano chips Agilent (California, USA) Cat#5067-1511

SuperScript II reverse transcriptase Thermo Fisher Scientific

(Massachusetts, USA)

Cat#18064014

PCR clean up kit QIAquick QIAGEN (France) Cat#28104

(Continued on next page)

e1 Molecular Cell 75, 982–995.e1–e9, September 5, 2019



Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

RNase A Sigma Aldrich (France) Cat#R6513-10MG

Q5 hot start DNA Polymerase New England Biolabs

(Massachusetts, USA)

Cat#M0494S

Nextera XT DNA library prep kit Illumina (California, USA) Cat#FC-131-1024

Nextera� XT Index Kit Illumina (California, USA) Cat#FC-131-1001

AMPure XP beads Beckman Coulter (France) Cat#A63881

PolyA RNA GE Healthcare (France) Cat#27-4110-01

4-12% NuPAGE� Bis-Tris Gels Thermo Fisher Scientific

(Massachusetts, USA)

Cat#NP0322BOX

12% NuPAGE� Bis-Tris Gels Thermo Fisher Scientific

(Massachusetts, USA)

Cat#NP0342BOX

UltraCruz� Blocking Reagent Santa Cruz Biotechnology,

Inc. (Texas, USA)

Cat#SC-516214

Lipofectamine 2000 Thermo Fisher Scientific

(Massachusetts, USA)

Cat#11668030

Click-iT Plus EdU Flow Cytometry Assay Kit Thermo Fisher Scientific

(Massachusetts, USA)

Cat#C10634

LIVE/DEAD Fixable Dead Cell Stain Thermo Fisher Scientific

(Massachusetts, USA)

Cat#L10119

Brilliant Violet 421 annexin V Biolegend (California, USA) Cat#640923

Propidium Iodide Biolegend (California, USA) Cat#421301

RevertAid First Strand cDNA Synthesis Kit Thermo Fisher Scientific

(Massachusetts, USA)

Cat#K1622

qPCRBIO SyGreen Mix PCR Biosystems (UK) Cat#PB20.16-01

Nutlin-3 Cayman Chemical (Michigan, USA) Cat#10004372

Deposited Data
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p53-Luc vector Dr. Yunli Zhou, Massachusetts
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Zhou et al., 2007

pcDNA-humanDINO Dr. Howard Chang, Stanford
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Zhou et al., 2007
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mammalian cell lines
HCT116 p53+/+ and p53�/� (Horizon Discovery) cell lines (both male, adult) were grown in McCoy’s 5a medium modified (Life Tech-

nologies) supplemented with fetal bovine serum to a final concentration of 10%. WI38 (ECACC 90020107) fibroblast cell line

(female, 3 month gestation fetus) was grown in Minimum Essential Medium Eagle (Sigma) supplemented with fetal bovine serum

to a final concentration of 10% and 2 mM L-Glutamine.

METHODS DETAILS

Cloning and mutagenesis
A plasmid containing the sequence of human v1 was obtained by gene synthesis [GeneArt (Life Technologies)]. From this synthetic

vector, the sequence of MEG3 was amplified by PCR and inserted by sequence- and ligation-independent cloning (SLIC) (Li and

Elledge, 2012) into the scaffold of a modified pBluescript vector immediately downstream of a T7 promoter sequence and immedi-

ately upstream of an XbaI restriction site. The resulting vector was named pTU1. All pBluescript based vectors were used for in vitro

transcription. Plasmid pTU2 containing v9 was created by deleting the sequence corresponding to E5 (nucleotides 936-1049) from

pTU1 by quick changemutagenesis. Plasmid pTU1a containing v3was created in two steps. First, the first 24 nt of v1were deleted by

quick change from pTU1. Second, E6 was inserted using four self-annealing primers and a DNA oligonucleotide by overlapping PCR

and SLIC. Plasmids pTU3-pTU7 contain 5 different domains of v1, domain1 (2-196), domain 2 (230-410), domain 3 (471-902), domain

4 (951-1113) and domain5 (1116-1486), respectively, determined according to the secondary structuremap. All domains were ampli-

fied by PCR from pTU1 and inserted by SLIC into the scaffold of pTU1 (between T7 promoter sequence and XbaI restriction site).

Plasmid pTU123 was created by mutating the terminal loop of the H11 to poly A in pTU1 with quick change mutagenesis.

pCMS-d2-MEG3 was a kind gift of Yunli Zhou (Zhou et al., 2007). All pCMS-d2-MEG3 based vectors were used for in vivo assays

by flow cytometry. Plasmid pTU8 (pCMS-d2-MEG3v1) was created by amplifyingMEG3 and addingSacI restriction site at 50 andNotI

restriction site on 30 by PCR from pTU1 and inserting it in pCMS-d2-MEG3 with quick ligation between SacI and NotI. Two comple-

mentary oligonucleotides SNf and SNr containing a SacI restriction site, 13 nt sequence (50-GGTTCACTAAACG-30) and NotI restric-

tion site were ordered from Eurofins (50- CCGTTTAGTGAACCGC-30, 50- GGCCGCGGTTCACTAAACGGAGCT-30). Plasmid pTU9

(pCMS-d2-empty) was created by annealing SNf and SNr by incubating 2 min at 95�C and letting it cool down to RT gently and in-

serting the resulting fragment in pCMS-d2-MEG3 with quick ligation between SacI and NotI. MEG3 variants 1 and 9 were cloned in

pcDNA3 vector between KpnI and NotI restriction sites. Different structural mutants were cloned in pCMS-d2-MEG3v1 (for flow cy-

tometry assay) and pcDNA3 (for luciferase assay) by quick change or SLIC mutagenesis. The presence of the target gene in all plas-

mids was confirmed by enzyme digestion or colony PCR and agarose gel electrophoresis. Sequence of all vectors was validated by

DNA sequencing (Eurofins). E. coliMach1 competent cells were used for cloning. Plasmids were extracted with mini and maxi preps

(QIAGEN) from a single colony.

In vitro transcription and purification
MEG3 was expressed and purified under non-denaturing conditions, as previously described (Chillón et al., 2015) with minor mod-

ifications. Briefly, plasmids pTU1-pTU7 and pTU123were linearized overnight with restriction enzyme XbaI (NEB). The linearized vec-

tors were transcribed in vitro with T7 polymerase in 100 mM MgCl2, 400 mM TrisHCl pH 8.0, 20 mM spermidine, 100 mM DTT.

Following transcription, template DNA and proteinswere removedwith TurboDNase (ThermoScientific) and proteinase K (Promega),

respectively. Divalent ions were chelated with EDTA in the presence of physiological concentrations of monovalent ions for accurate

subsequent titration of magnesium concentrations in folding experiments. Samples were then rebuffered in 0.1 M KCl, 8 mM

K-MOPSpH 6.5, 0.1mMNa-EDTA using Amicon Ultra-0.5 centrifugal concentrators (molecular weight cut-off of 100 kDa) finally sub-

jected to a polishing size-exclusion chromatography (SEC) step using Tricorn columns (GE Healthcare) self-packed with Sephacryl

S500 resin and run in 0.1 M KCl, 8 mM K-MOPS pH 6.5, 0.1 mM Na-EDTA if not otherwise specified.

Native gel electrophoresis
1% agarose gels were run in 1x Tris-Borate (TB) buffer (89 mM Tris base, 89 mM boric acid) supplemented with the indicated con-

centrations of Mg2+. Gels in TBwith noMg2+ and with 2 mMMg2+ were run for 45 min at 110 V, and gels in TBwith 5 and 10mMMg2+

were run for 120 min at 80 V. Samples were mixed in a 5:1 ratio with 6x RNA native gel dye (0.5x TB buffer, 40% sucrose, 0.5% w/V

orange G) before gel loading. Gels were stained with 1x SYBR Safe gel stain in 1x TB buffer for 1 h at room temperature before expo-

sure (Invitrogen).

Analytical ultracentrifugation (AUC)
Analytical ultracentrifugation (AUC) sedimentation velocity experiments were performed as described (Chillón et al., 2015). Purified

MEG3 was supplemented with varying concentrations of MgCl2 ranging from 0.01 mM to 100 mM. Samples were analyzed using

Beckman XL-A/XL-I centrifuge with AN-50 Ti rotor (Beckman Coulter). All experiments were performed at 20�C at 25,000 rpm over-

night. Data were analyzed with Sedfit using continuous c(s) distribution model (Schuck, 2000).
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Dynamic light scattering (DLS)
Dynamic light scattering (DLS) was performed as previously described (Patel et al., 2017) using purified MEG3 samples in a concen-

tration range from 0.5 mM to 5.5 mM and a Zetasizer Nano S spectrometer (Malvern).

Size-exclusion chromatography coupled to multi-angle laser light scattering (SEC-MALLS)
Size-exclusion chromatography coupled to multi-angle laser light scattering (SEC-MALLS) was performed as described (Folta-Stog-

niew, 2006; Patel et al., 2017). PurifiedMEG3was diluted to concentrations of 0.32-5.0 mMand injected on SEC-MALLS using Tricorn

columns (GE Healthcare) self-packed with Sephacryl S500 resin and run in 0.1 M KCl, 8 mM K-MOPS pH 6.5, 0.1 mM Na-EDTA.

Size-exclusion chromatography coupled to small-angle X-ray scattering (SEC-SAXS)
Size exclusion chromatography coupled to small angle X-ray scattering (SEC-SAXS) was performed as described (Chen and Pollack,

2016; Jacques and Trewhella, 2010). Purified MEG3 was filtered using centrifugal filter units with 0.22 mmpore size (Merck Millipore).

Different aliquots of pure MEG3 were diluted to concentrations of 0.32-5.0 mM and injected on Tricorn columns (GE Healthcare) self-

packed with Sephacryl S500 resin and run in 0.1 M KCl, 8 mM K-MOPS pH 6.5, 0.1 mM Na-EDTA. SAXS data were collected during

elution at the BioSAXS beamline BM29 at ESRF, Grenoble and analyzed in ISpyB (Delagenière et al., 2011) and using ATSASmodules

PRIMUS and DAMMIF (Petoukhov et al., 2012).

In vitro secondary structure probing (in vitro SHAPE)
Selective 20-Hydroxyl acylation Analyzed by Primer Extension (SHAPE) (Wilkinson et al., 2006) was performed on the peak fraction of

MEG3 eluted from SEC and supplemented with 17.5 mM MgCl2. MEG3 was chemically probed using 1-methyl-7-nitroisatoic anhy-

dride (1M7), N-methylisatoic anhydride (NMIA), 1-methyl-6-nitroisatoic anhydride (1M6) and dimethyl sulfate (DMS) for each reagent

in triplicate (Rice et al., 2014; Somarowthu et al., 2015).

Modifications were then mapped onto the MEG3 sequence by reverse transcription. 8 primers positioned every 200 bp of MEG3,

were designed and coupled with fluorescent dyes 5-FAM and JOE (Tebu-bio). The primer extension reaction was performed using

the Omniscript reverse transcriptase (QIAGEN). DMSO and EtOH were used as non-adduct forming controls. Samples were then

submitted for fragment length analysis with capillary electrophoresis (Eurofins). QuShape (Karabiber et al., 2013) was used to

determine the chemical probing reactivity profiles. Formation of adducts was quantified by comparison between the 1M7-, 1M6-,

NMIA- and the DMSO-treated samples and rate of methylation was quantified by comparison between the DMS- and EtOH-treated

samples. Average values of individual DMS reactivity values from 3 replicas were self-normalized as described (Chillón et al., 2015).

Average values of individual 1M7 reactivity values from 3 experiments were normalized with ‘‘simple2boxplot.py’’ python script

(Rice et al., 2014) and average values of individual 1M6 and NMIA reactivity values from 3 experiments were normalized with

‘‘boxplot2simple.py’’ python script (Rice et al., 2014). Such normalization processes also remove outliers, i.e., data points for nucle-

otides with exceptionally high reactivity values (Rice et al., 2014). Typical reads from consecutive primers overlapped by about �20

nucleotides. In these overlapping regions, we averaged reactivity values from the two contributing primers in each replica before

averaging the corresponding values of independent replicas. Fluctuations in those overlapping regions are similar to fluctuations

across experimental biological replicas. Normalized 1M6 reactivity values were subtracted from the NMIA reactivity values with ‘‘dif-

ferenceByWindow.py’’ python script (Rice et al., 2014). Normalized 1M7 reactivity values were classified in 3 groups as follow: 0-0.40

not reactive (most likely base-paired), 0.40-0.85 moderately reactive and > 0.85 very reactive (most likely single stranded). The

software SuperFold with default settings (Siegfried et al., 2014) was used to obtain the secondary structure maps. The software

RNAStructure (Mathews, 2004; Reuter and Mathews, 2010) was additionally employed using 1M7 reactivity values of the entire

v1 to produce the structural ensemble of the MEG3 core (D2-D3) (Figure S4). Java applet VARNA (Darty et al., 2009) was used to

visualize and draw the resulting secondary structures.

In vivo secondary structure probing (in vivo SHAPE)
In vivo probing was performed in duplicate on endogenous MEG3 from WI38 or transfected v1 in HCT116 cells. Live cells were

collected with cell scraper, pelleted, washed with PBS and supplemented with 900 mL of fresh growth media and with 100 mL of

100 mM or 250 mM 1M7 in DMSO (10x final concentration) as indicated. Negative control samples were treated with DMSO only.

Cells were then incubated for 5 minutes at 37�C. Media was removed and the cells were washed once with PBS before isolation

of total RNA with RNeasy Mini kit (QIAGEN), according to manufacturer’s instructions. DNA was additionally digested with Turbo

DNase I (Thermo Scientific) for 1 h at 37�C. Total RNA extract was then cleaned using the Zymogen RNA clean and concentrator

kit (Zymo Research), according to manufacturer’s instructions. The integrity of extracted RNA was checked with RNA 6000 Nano

chips (Agilent) on Agilent 2100 Bioanalyzer. RNA was reverse transcribed to cDNA with random nonamers (NEB), using SuperScript

II RT (Invitrogen) in MaP buffer (125 mM Tris-HCl pH 8.0, 187.5 mM KCl, 25 mM DTT, 1.25 mM dNTP, 15 mMMnCl2) that introduces

mutations at the sites where 1M7 forms adducts with RNA. As a control a parallel reaction was performed without reverse transcrip-

tase. PCR products were cleaned with PCR clean up kit QIAquick (QIAGEN), according tomanufacturer’s instructions. Residual RNA

was digested with RNase A (Sigma). cDNA was amplified with 4 sets of primers (50-CGGAGAGCAGAGAGGG-30 & 50-GGGTGATGA

CAGAGTCAGTC-30; 50-CCTGACCTTTGCTATGCTC-30 & 50- CTGATGCAAGGAGAGCC-30; 50-CAGGATCTGGCATAGAGGAG-30 &
50-GAATAGGTGCAGGGTGTC-30; 50-CCTCTCGTCTCCTTCCTG-30 & 50-CAGGAAACACATTTATTGAGAGC-30) with Q5 hot start
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DNA Polymerase (NEB), according to manufacturer’s instructions. PCR reactions were cleaned with DNA clean&concentrateTM-5 kit

(Zymogen), according to manufacturer’s instructions. Concentration of all fragments was measured with Qubit3 fluorimeter (Invitro-

gen). Size and purity of DNA fragments were checked by high sensitivity DNA chips (Agilent) on Agilent 2100 Bioanalyzer, according

to manufacturer’s instructions. All fragments belonging to same samples were mixed to 0.2 ng/ml. Libraries were tagmented and

amplified by Nextera XT DNA library prep kit (Illumina), according tomanufacturer’s instructions. Libraries were cleaned with AMPure

XP beads (Beckman Coulter), according to manufacturer’s instructions. Library concentration was checked with Qubit3 fluorimeter

(Invitrogen) and size distribution by high sensitivity DNA chips (Agilent) on Agilent 2100 Bioanalyzer. Libraries were sent for

sequencing to the EMBL GeneCore Facility (EMBL Heidelberg). Data were processed with ShapeMapper2 (Busan and Weeks,

2018). 1M7 reactivity values from in vivo probing were normalized and scaled following the processing pipeline previously used

for lncRNA XIST (Smola et al., 2016). Raw sequencing data are available at BioProject: PRJNA552583.

Ex vivo secondary structure probing (ex vivo SHAPE)
Ex vivo probing was performed in duplicate on endogenous MEG3 fromWI38 or transfected v1 in HCT116 cells. RNA was extracted

using a gentle procedure to avoid denaturation and preserve native secondary structure, following previously established protocol

(Smola et al., 2015a). Briefly, live cells were collected with cell scraper, pelleted, washed with PBS and resuspended in 2.5 mL lysis

buffer (40 mM Tris-HCl pH 7.9, 25 mM NaCl, 6 mMMgCl2, 1 mM CaCl2, 256 mM sucrose, 0.5% Triton X-100, 1 U/ml murine RNase

inhibitor, 100 U/ml turbo DNase) and shaken on ice for 5 minutes. Cells were then pelleted at 4�C for 2 minutes at 1000 g and resus-

pended in 300 ml of resuspension buffer (40 mM Tris-HCl pH 7.9, 200 mM NaCl, 1.5% SDS, and 500 mg/ml of proteinase K) and

shaken at room temperature for 45 minutes. RNA was then extracted twice with a mixture of phenol:chloroform:isoamyl alcohol

(25:24:1) pre-equilibrated with 1x folding buffer (100 mM HEPES-Na, pH 8.0, 100 mM NaCl, 10 mM MgCl2). Finally, RNA was ex-

tracted with chloroform and exchanged into 1.1 3 folding buffer using a desalting column (PD-miditrap G25, GE Life Sciences).

RNA extracts were incubated at 37�C for 20 minutes. Approximately 10 mg of RNA was then added to a one-ninth volume of

100 mM 1M7 in DMSO (10 mM final concentration) and incubated at 37�C for 5 minutes. Negative control samples were treated

with DMSOonly.ModifiedRNAwas cleaned using the ZymogenRNAclean and concentrator kit (ZymoResearch), according toman-

ufacturer’s instructions. The integrity of extracted RNAwas checkedwith RNA6000Nano chips (Agilent) on Agilent 2100 Bioanalyzer.

RNA was reverse transcribed to cDNA with random nonamers (NEB), and amplified as described for in vivo SHAPE probing above.

Data were processedwith ShapeMapper2 (Busan andWeeks, 2018). 1M7 reactivity values from ex vivo probing were normalized and

scaled following the processing pipeline previously used for lncRNA XIST (Smola et al., 2016). Such values were then compared to

corresponding 1M7 reactivity values from in vivo probing using deltaSHAPE (Smola et al., 2015a, 2015b). Raw sequencing data are

available at BioProject: PRJNA552583.

Hydroxyl radical footprinting (HRF)
HRFwas performed in triplicates for each condition, following a protocol described previously for group II intron (Swisher et al., 2001),

with minor modifications. MEG3 was purified as for SHAPE (see above), but in 10 mM potassium cacodylate pH 7.0, 0.1 mM EDTA,

150 mM KCl to prevent quenching of radicals. 10 pmol of purified RNA were then supplemented with DEPC-treated water or

17.5 mM MgCl2 in the purification buffer and folded at 37�C for 45 min. Folded RNA was subjected to Fenton reaction by treatment

with iron-EDTA solution (4 mM iron (II) sulfate hexahydrate: 4.4 mMNa-EDTA pH 8) to a final concentration of 0.08:0.088mM, sodium

ascorbate to a final concentration of 1 mM and H2O2 to a final 0.6% Vol. All solutions used in the Fenton reaction step were prepared

freshly directly prior to use. The RNA was kept at 37�C at all times to maintain homogeneous folding. The reagents were deposited in

equal volumes on the walls of the Eppendorf tubes containing the folded RNA and mixed with the sample simultaneously by brief

vortexing. Control samples were treated with an equal total volume of DEPC-treated water. Samples were incubated at 37�C for

15 s and the reaction was stopped by the addition of quenching solution (100 mM thiourea, 200 mM EDTA, pH 8.0) and samples

were transferred on ice. RNA was isolated by isopropanol precipitation. Treated RNA was resuspended in 50 mL RNA storage buffer

(10 mM K-MOPS pH 6.5, 0.1 mM Na-EDTA pH 8.0) and analyzed by fragment extension and fragment length analysis as for SHAPE.

Reactivity values of v1 (compact state) from 3 independent experiments were normalized to the corresponding water-treated control

sample using the ‘‘simple2boxplot.py’’ python script (Rice et al., 2014). Such normalization processes also remove outliers, i.e., data

points for nucleotides with exceptionally high reactivity values (Rice et al., 2014). Normalized HRF reactivity values were then clas-

sified into 4 groups, for color coding of Figure 5B: 0-0.29 not reactive (most solvent-protected), 0.29-0.58 poorly reactive (moderately

solvent-protected), 0.58-0.86 moderately reactive (moderately solvent-exposed), and > 0.86 very reactive (most solvent-exposed).

Reactivity values of H11LpA were scaled to the reactivity values of v1 (compact state) using the normalization procedure of QuSH-

APE, as described (Karabiber et al., 2013).

Atomic force microscopy (AFM)
MEG3 and group II intron (Marcia and Pyle, 2012) were purified as described and the fraction of MEG3 and group II intron with the

highest concentration eluted from SEC after purification was diluted in filtration buffer (0.1 M KCl, 8 mMK-MOPS pH 6.5, 0.1 mMNa-

EDTA), filtration buffer with magnesium (0.1 M KCl, 8 mM K-MOPS pH 6.5, 0.1 mM Na-EDTA, 10mM MgCl2), or water at the

desired concentrations. Poly(A) RNA (GE Healthcare) used as negative control was dissolved in the same buffers at a concentration

of 0.3 mg/ml. To obtain denatured samples, the corresponding RNAs were precipitated with isopropanol overnight at �20�C and
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resuspended in deionized formamide and diluted with ethanol to reach same final concentration as samples diluted in buffer. A 1 ml,

2.5 ml or 5 ml drop of RNA was deposited on freshly cleaved mica, incubated for 3 min, washed with 2 mL of water with 200 ml drop

steps to remove excessive salt crystals, and finally dried with nitrogen gas. Denatured samples were deposited on mica, incubated

3 min and dried with nitrogen gas. Imaging was performed on a Multimode 8, Nanoscope V (Bruker) equipped with NanoScope soft-

ware (Bruker, Santa Barbara, CA). Imagingwas donewith peak force tapping (PFT) imagingmode at�1Hz rate, with 512 or 1024 pixel

sampling and other PFT parameters were initially manually adjusted and then automatically controlled with ScanAsyst mode in air.

Cantilever ScanAsyst-air (Bruker) with a nominal 2 nm tip radius, 70 kHz frequency and 0.4 N/m spring constant was used. Images

were processed with Gwyddion (Necas and Klapetek, 2012), and if needed stripe noise was removed using DeStripe (Chen and Pel-

lequer, 2011). Power Spectral Densities (PSDs) of the AFM topographic signal were collected in square regions of 250 nm side around

each particle of interest (Higuchi, 1988). PSD plots were computed separately for all particles acquired at 1024x1024 pixel2 with a

pixel size of 0.98 nm/pixel (reported in Figure 6) and for all particles acquired at 512x512 pixel2 with a pixel size of 1.96 nm/pixel (nearly

identical to the 1 nm/pixel PSDs). The PSDs were collected along the fast scanning axis of the microscope to avoid potential artifacts

due to line-to-line offset. For comparing v1 and H11LpA (Figure 6), the PSDswas collected along the y axis, due to a slight resonance

of the tip along the fast scanning axis (x) of the mutant dataset. PSDs of v1 along x and y are nearly identical. PSDs were calculated

using the SPM data analysis software Gwyddion (Necas and Klapetek, 2012), and the PSDs for all the particles observed under each

given experimental condition were averaged using the software Igor Pro (WaveMetrics, USA). The resulting averaged PSDs were

plotted against the spatial (angular) frequency and the associated spatial length scale (Calò et al., 2009). Linear fits to the so-called

auto-affine region, i.e., where the PSD frequency dependence is of the form PSD(f) = a0f
-g, are displayed as dashed lines. Fits were

performed using a weighted least square algorithm within an arbitrarily selected x-range using the software Igor Pro. In total we ac-

quired 10 images (75 particles) for v1 in the denatured state, 20 images (109 particles) for v1 in the intermediate state, 15 images

(108 particles) for v1 in the compact state, and 21 images (106 particles) for H11LpA in K+ and Mg2+.

Quantitative real-time PCR (qRT-PCR)
cDNA was generated from 5 mg total RNA by reverse transcription (RT) using random hexamers (Thermo) and SuperScript II reverse

transcriptase (Invitrogen). qRT-PCR was performed on a Mx3005P qPCR system (Agilent) and data were analyzed using the Pfaffl

method (Pfaffl, 2001). The program was comprised of 40 amplification cycles using an annealing temperature of 62�C for 30 s

and an elongation time of 30 s at 72�C, followed by the generation of a melting curve. Primers were designed with Clone Manager

Professional Suite (Sci Ed Central) and examined for possible secondary structures with OligoAnalizer 3.1 (Integrated DNA Technol-

ogies). Amplified target regions and corresponding primers are provided in Table S3, respectively. Beta-actin mRNA was used as

reference to normalize for total cellular RNA. Neomycin mRNA was used as a reference to normalize for transfection efficiency.

Statistical analyses were performed using the Prism 6 package (GraphPad Software).

Western blot
HCT116 cells were transfected in 6-well plates with 1 mg of pcDNA3-MEG3 v1 plasmid or equimolar amounts of the indicated plas-

mids using 5 mL of Lipofectamine 2000 (Invitrogen). After 48 hours, total cell lysates were prepared from trypsinized cells, pelleted and

resuspended in modified buffer A (150 mM KCl, 25 mM Tris-HCl pH 7.4, 1.5 mM MgCl2, 1 mM DTT, 0.5% Igepal, 1 mM PMSF,

cOmplete protease inhibitor, 9 mg/ml leupeptin, 9 mg/ml pepstatin, 100 U/ml RNaseOUT). The lysate was then sonicated using a Bio-

ruptor� System (Diagenode) using the following program: 10 cycles (30 s on, 30 s off) at position H, 5 cycles (30 s on, 30 s off) at

position M. Finally, the cell debris were eliminated by centrifugation at maximum speed for 10 min and the supernatant was directly

used for the experiment. 20 mg or 40 mg of total cell lysate were loaded onto a 4%–12% NuPAGE� Bis-Tris Gels (Invitrogen) with

MOPS SDS Running Buffer for 55 min at 200V (actin, p53) or onto a 12%NuPAGE� Bis-Tris Gels (Invitrogen) with MES SDS Running

Buffer for 75min at 200V (BAX, p21). The proteins were transferred to a nitrocellulose membrane using an iBlot 2 Dry Blotting System

(Invitrogen), following manufacturer’s recommendations. The blots were blocked using UltraCruz� Blocking Reagent (Santa Cruz

Biotechnology) for 1 h at room temperaturewith shaking. The primary and secondary antibodies (Table S4) were diluted in UltraCruz�
Blocking Reagent (Santa Cruz Biotechnology), incubated with the membrane for 1 h at room temperature with shaking and washed

with TBST buffer 1X (10mM Tris-Cl pH 8, 150mMNaCl, 0.05% Tween-20). The blots were visualized under a ChemiDocMP Imaging

System (Bio-Rad) using the appropriate filters.

Luciferase assay
HCT116 cells were seeded at 83000 cells/well in a cell-culture treated 12-well plate (Costar) and transfected after 24 h with 115.96

fmol of pcDNA3 vector containing the indicatedMEG3 constructs, 50 ng of p53-Luc [kind gift from Yunli Zhou (Zhou et al., 2007)] and

5 ng of pRL Renilla Luciferase Control Reporter Vector (Promega) using Lipofectamine 2000 (Life Technologies), according to

manufacturer’s instructions. Transfected cells were incubated for 48 h. Cells were lysed with 1x passive lysis buffer provided in

the Dual-Luciferase� Reporter (DLR) Assay System (Promega). Production of the Firefly luciferase was measured by adding Lucif-

erase Assay Reagent II (Promega) and measuring luminescence with microplate reader CLARIOstar (BMG Labtech). This reaction

was then quenched and production of Renilla luciferase was measured by adding Stop & Glo� Reagent (Promega) to normalize

the Firefly readout values for transfection efficiency. RNA expression was confirmed for all constructs by qRT-PCR.
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Cell cycle and apoptosis assays by flow cytometry
HCT116 cells were seeded at 200,000 cells/well in 6-well cell culture plates (Costar) and transfected with 1 mg of pCMS-d2EGFP-

MEG3v1 or equimolar amounts of indicated plasmids with 5 mL Lipofectamine 2000 (Invitrogen). For cell cycle analysis, cells were

incubated with EdU and the incorporation was detected using the Click-iT Plus EdU Flow Cytometry Assay Kit (Thermo Fisher Sci-

entific) following manufacturer’s instructions with some modifications. Briefly, at each time point, cells were labeled with 10 mM EdU

for 1 h, washed with PBS and trypsinized. The trypsinized cells were washed with PBS and incubated with LIVE/DEAD Fixable Dead

Cell Stain (Invitrogen) for 15 min to evaluate the viability of the transfected cells. Cells were then fixed with a 4% paraformaldehyde

solution for 15 min and permeabilized with Click-iT saponin-based permeabilization and wash reagent. After all time points were

collected, samples were subjected to the Click-iT reaction following manufacturer’s instructions and resuspended in Click-iT�
saponin-based permeabilization and wash reagent containing 1 mL FxCycle Violet Stain (Invitrogen). For the apoptosis assay,

100,000 cells were incubated with 5 ml of Brilliant Violet 421 annexin V (Biolegend) and 10 ml of 0.5 mg/ml of propidium iodide

(Biolegend). Compensation controls were prepared from samples stained with one dye at a time. Data were acquired on a BD

LSR II Flow Cytometer (Becton Dickinson) and on a MACSQuant� VYB instrument (Miltenyi Biotec) and analyzed using the FCS

Express 6 package (De Novo Software).

RNA immunoprecipitation (RIP)
RIP was performed following the protocol established by Keene et al., with some modifications (Keene et al., 2006). Briefly, 23 107

HCT116 cells were lysed in lysis buffer (10 mM HEPES pH 7.4, 100 mM KCl, 5 mM MgCl2, 0.5% NP40, 1 mM DTT plus RNase and

proteinase inhibitors) for 3 h at �80�C and centrifuged at 12,000 3 g for 30 min at 4�C. The supernatants were collected and 1% of

each sample was set aside as input while the remaining was incubated for 4 h at 4�C with protein G magnetic beads (Thermo Fisher

Scientific) coated either with 4 mg of an anti-p53 antibody (Santa Cruz, DO1) or with 4 mg of mouse IgG (Santa Cruz). The beads were

thenwashed four timeswith NT2 buffer (50mMTris–HCl pH 7.5, 150mMNaCl, 1mMMgCl2, 0.05%NP-40, 0.5%urea) and RNAwas

isolated from Input and IP samples using TRIzol (Thermo Fisher Scientific). Extracted RNAs were treated with DNase for 30 min at

37�Cprior to being converted to cDNA using the RevertAid First Strand cDNASynthesis Kit (Thermo Fisher Scientific), followingman-

ufacturer’s instructions. The qPCRBIOSyGreenMix (PCRBiosystems) was used asmastermix for qRT-PCR, adding 200 nM forward

and reverse primers. The reactionswere performed on aCFX384 thermal cycler (Biorad) in technical duplicates for each target and for

a total of four biological replicas. Raw data were processed with Biorad CFX Manager software to obtain the Ct values. Results are

expressed as percent of input. GAPDH and RNR1 were used as controls for p53 non-specific RNA binding.

Pull-down assays
In vitro transcribed biotinylated v1 and H11LpA were produced using the biotin RNA labeling mix (Roche) with 2.5 mg of linearized

plasmids in a final volume of 50 mL and purified under non-denaturing conditions (Chillón et al., 2015) into equilibration buffer

(150 mM KCl, 10 mM Tris-HCl pH 7.4, 1.5 mMMgCl2). The integrity of the RNA was assessed in a 2100 Bioanalyzer System (Agilent

Technologies). The HCT116 cells were grown in 10-cm plates without antibiotics and treated with (+/�)-nutlin-3 (Cayman Chemical)

at 10 mMfinal concentration for 16 h. The nuclei were extracted by incubating the cells in a solution containing 3:1:1 of water, PBS and

nuclear isolation buffer (1.28 M sucrose, 40 mM Tris-HCl pH7.5, 20 mMMgCl2 and 4% Triton X-100) (Marı́n-Béjar and Huarte, 2015),

respectively, for 20minutes at 4�Cwith constant mixing. The nuclei were spun at 300x g for 15minutes at 4�C and the pellet dissolved

in modified buffer A (150 mM KCl, 25 mM Tris-HCl pH 7.4, 1.5 mMMgCl2, 1 mM DTT, 0.5% Igepal, 1 mM PMSF, cOmplete protease

inhibitor, 9 mg/ml leupeptin, 9 mg/ml pepstatin, 100 U/ml RNaseOUT). The nuclei suspension was sonicated using a Bioruptor� Sys-

tem (Diagenode) using the following program: 15 cycles (30 s on, 30 s off) at position H, 5 cycles (30 s on, 30 s off) at position M.

Finally, the cell debris were eliminated by centrifugation at maximum speed for 10 minutes and the supernatant was directly used

for the experiment. The nuclear lysate was pre-cleared by incubating it with 0.25 mg/mg protein of yeast tRNA and 1 mg /mg protein

ofM-280 beads (Invitrogen), previously cleaned followingmanufacturer’s instructions, for 1 h at 4�C under rotation (Zhou et al., 2017).

The beads were coated with BSA and tRNAs to prevent unspecific interactions by incubating them in binding buffer (0.2 mg/ml BSA

ultrapure and 50 mg/ml yeast tRNA in modified buffer A) for 2 h at 4�C under rotation. The pull-down was performed by mixing 0.5 mg

of pre-cleared nuclear lysate with 10 mg of biotinylated RNA (20 pmol) for 2 h at 4�C with constant mixing, followed by addition of

450 mg of washed and coated M-280 beads, for 30 minutes at room temperature. The beads were washed five times with 0.5 mL

of modified buffer A and eluted in 25 mL of Laemmli sample buffer before loading the samples onto a 4%–12% NuPAGE� Bis-

Tris Gels (Invitrogen) with MOPS SDS Running Buffer. The gel was blotted as described in the western blot section above.

Sequence and structural alignments
Sequences corresponding to human MEG3 exons (nucleotides 230-902) were identified in other mammals with BLAT (Kent, 2002)

and aligned in Clustal Omega (Li et al., 2015). We defined mammalian orders according to (Tarver et al., 2016). For secondary struc-

ture-based alignments, Clustal Omega was used to align 19 mammal sequences corresponding to humanMEG3 E3 and selected to

cover at least 2-3 species for each order of mammals and limiting overrepresentation of any order, especially primates. A covariance

model was then built, calibrated, and used to expand such seed alignment to a total of 41 sequences in Infernal (Nawrocki and Eddy,

2013), based on the secondary structure for D2-D3 of human v1. R2R (Weinberg and Breaker, 2011) was used to graphically depict

the resulting alignment files produced by Infernal. Additionally, we used RScape (Rivas et al., 2017) to assess the statistical
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significance of observed covariations. Default settings of RScape do not reveal significance covariation, but a windowing approach

using RAFS covariation metrics (Tavares et al., 2019) determines the following base pairs as significantly covariant (E values < 0.05):

241-292 and 242-291 (H8); 308-339, 309-338 and 310-337 (H10); 359-380 and 361-378 (H11); 499-516 (H17); 540-551 (H19);

573-686 (H21); 601-613 and 602-612 (H22); and 808-823, 810-821, and 812-819 (H28) (numbers from human v1, see Figure 2).

RScape does not detect significant covariance in the proposed H11-H27 pseudoknot. Statistical assessment of the significance

of covariation in lncRNAs is controversial and must be interpreted with caution (Rivas et al., 2017; Somarowthu et al., 2015; Tavares

et al., 2019) particularly when the number of aligned sequences is small, as in the case of MEG3 (41 sequences).

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyseswere performed in Prism v.6.05 (GraphPad Software Inc) using one-way ANOVA or unpaired parametric t tests,

as indicated in the respective Figure legends. Figure legends also report the respective values of independent experiments (n), defi-

nition of the center, and dispersion measures.

DATA AND CODE AVAILABILITY

The accession number for the RNA sequencing data for in vivo and ex vivo SHAPE probing reported in this paper is BioProject:

PRJNA552583. Original data for Figure 1A, Figures 4E, 4F, and 4H, and Figures 6 and S7 are available in Mendeley (Mendeley

Data https://doi.org/10.17632/xcc3x848rv.1). All other data are available from the corresponding authors on request.
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