275 research outputs found

    The End of the Three Percent Rule: How Structural Changes in the U.S. Economy have Impacted Economic Growth

    Get PDF
    Using data from government sources (FRED, BEA, BLS), the thesis explores the underlying reasons for declining U.S. economic growth. A long standing trend of annual 3% growth no longer seems to hold true for the economy. The paper summarizes current theory as to why the growth has slowed and finds new explanations by analyzing the various major industries which make up GDP. The results show that sectoral shifts in employment from high paying industries to low paying industries help to explain a significant portion of the decline in national growth rates. The decline in growth is primarily driven by about ten poor performing states

    Mesocorticolimbic monoamine correlates of methamphetamine sensitization and motivation.

    Get PDF
    Methamphetamine (MA) is a highly addictive psychomotor stimulant, with life-time prevalence rates of abuse ranging from 5-10% world-wide. Yet, a paucity of research exists regarding MA addiction vulnerability/resiliency and neurobiological mediators of the transition to addiction that might occur upon repeated low-dose MA exposure, more characteristic of early drug use. As stimulant-elicited neuroplasticity within dopamine neurons innervating the nucleus accumbens (NAC) and prefrontal cortex (PFC) is theorized as central for addiction-related behavioral anomalies, we used a multi-disciplinary research approach in mice to examine the interactions between sub-toxic MA dosing, motivation for MA and mesocorticolimbic monoamines. Biochemical studies of C57BL/6J (B6) mice revealed short- (1 day), as well as longer-term (21 days), changes in extracellular dopamine, DAT and/or D2 receptors during withdrawal from 10, once daily, 2 mg/kg MA injections. Follow-up biochemical studies conducted in mice selectively bred for high vs. low MA drinking (respectively, MAHDR vs. MALDR mice), provided novel support for anomalies in mesocorticolimbic dopamine as a correlate of genetic vulnerability to high MA intake. Finally, neuropharmacological targeting of NAC dopamine in MA-treated B6 mice demonstrated a bi-directional regulation of MA-induced place-conditioning. These results extend extant literature for MA neurotoxicity by demonstrating that even subchronic exposure to relatively low MA doses are sufficient to elicit relatively long-lasting changes in mesocorticolimbic dopamine and that drug-induced or idiopathic anomalies in mesocorticolimbic dopamine may underpin vulnerability/resiliency to MA addiction

    Dietary Microbes Modulate Transgenerational Cancer Risk

    Get PDF
    Environmental factors are suspected in the increase of obesity and cancer in industrialized countries but are poorly understood. Here, we used animal models to test how future generations may be affected by Westernized diets. We discover long-term consequences of grandmothers' in utero dietary exposures, leading to high rates of obesity and frequent cancers of lung and liver in two subsequent generations of mice. Transgenerational effects were transplantable using diet-associated bacteria communities alone. Consequently, feeding of beneficial microbes was sufficient to lower transgenerational risk for cancer and obesity regardless of diet history. Targeting microbes may be a highly effective population-based approach to lower risk for cancer.National Institutes of Health (U.S.) (RO1CA108854)National Institutes of Health (U.S.) (U01 CA164337)National Institutes of Health (U.S.) (P30-ES002109

    Pharmacological Advances in Opioid Therapy: A Review of the Role of Oliceridine in Pain Management

    Get PDF
    Problems with the treatment of acute pain may arise when a patient is opioid-tolerant, such as those on chronic therapy with opioids or opiate replacement therapy, those who misuse opioids, and those who are in recovery. While some of the adverse effects of opioid medications are well known, it is also important to recognize the roles of tolerance and hyperalgesia. Oliceridine can target and modulate a novel μ-receptor pathway. The G protein-biased agonism of oliceridine allows for effective re-sensitization and desensitization of the mu-opioid receptor, which decreases the formation of opioid tolerance in patients. Oliceridine has been demonstrated to be an effective and relatively safe intravenous analgesic for the treatment of postoperative pain and is generally well tolerated with a favorable side effect profile when compared to morphine. As the prevalence of pain increases, it is becoming increasingly important to find safe and effective analgesics

    Adjuvant drugs for peripheral nerve blocks: The role of alpha-2 agonists, dexamethasone, midazolam, and non-steroidal anti-inflammatory drugs

    Get PDF
    Adjuvant drugs for peripheral nerve blocks are a promising solution to acute postoperative pain and the transition to chronic pain treatment. Peripheral nerve blocks (PNB) are used in the brachial plexus, lumbar plexus, femoral nerve, sciatic nerve, and many other anatomic locations for site-specific pain relief. However, the duration of action of a PNB is limited without an adjuvant drug. The use of non-opioid adjuvant drugs for single-shot peripheral nerve blocks (sPNB), such as alpha-2 agonists, dexamethasone, midazolam, and non-steroidal anti-inflammatory drugs, can extend the duration of local anesthetics and reduce the dose-dependent adverse effects of local anesthetics. Tramadol is a weak opioid that acts as a central analgesic. It can block voltage-dependent sodium and potassium channels, cause serotonin release, and inhibit norepinephrine reuptake and can also be used as an adjuvant in PNBs. However, tramadol’s effectiveness and safety as an adjuvant to local anesthetic for PNB are inconsistent. The effects of the adjuvants on neurotoxicity must be further evaluated with further studies to delineate the safety in their use in PNB. Further research needs to be done. However, the use of adjuvants in PNB can be a way to help control postoperative pain

    TRH: Pathophysiologic and clinical implications

    Get PDF
    Thyrotropin releasing hormone is thought to be a tonic stimulator of the pituitary TSH secretion regulating the setpoint of the thyrotrophs to the suppressive effect of thyroid hormones. The peptide stimulates the release of normal and elevated prolactin. ACTH and GH may increase in response to exogenous TRH in pituitary ACTH and GH hypersecretion syndromes and in some extrapituitary diseases. The pathophysiological implications of extrahypothalamic TRH in humans are essentially unknown. The TSH response to TRH is nowadays widely used as a diganostic amplifier in thyroid diseases being suppressed in borderline and overt hyperthyroid states and increased in primary thyroid failure. In hypothyroid states of hypothalamic origin, TSH increases in response to exogenous TRH often with a delayed and/or exaggerated time course. But in patients with pituitary tumors and suprasellar extension TSH may also respond to TRH despite secondary hypothyroidism. This TSH increase may indicate a suprasellar cause for the secondary hypothyroidism, probably due to portal vessel occlusion. The TSH released in these cases is shown to be biologically inactive

    Dual Pharmacological Targeting of HDACs and PDE5 Inhibits Liver Disease Progression in a Mouse Model of Biliary Inflammation and Fibrosis

    Get PDF
    Liver fibrosis, a common hallmark of chronic liver disease (CLD), is characterized by the accumulation of extracellular matrix secreted by activated hepatic fibroblasts and stellate cells (HSC). Fibrogenesis involves multiple cellular and molecular processes and is intimately linked to chronic hepatic inflammation. Importantly, it has been shown to promote the loss of liver function and liver carcinogenesis. No effective therapies for liver fibrosis are currently available. We examined the anti-fibrogenic potential of a new drug (CM414) that simultaneously inhibits histone deacetylases (HDACs), more precisely HDAC1, 2, and 3 (Class I) and HDAC6 (Class II) and stimulates the cyclic guanosine monophosphate (cGMP)-protein kinase G (PKG) pathway activity through phosphodiesterase 5 (PDE5) inhibition, two mechanisms independently involved in liver fibrosis. To this end, we treated Mdr2-KO mice, a clinically relevant model of liver inflammation and fibrosis, with our dual HDAC/PDE5 inhibitor CM414. We observed a decrease in the expression of fibrogenic markers and collagen deposition, together with a marked reduction in inflammation. No signs of hepatic or systemic toxicity were recorded. Mechanistic studies in cultured human HSC and cholangiocytes (LX2 and H69 cell lines, respectively) demonstrated that CM414 inhibited pro-fibrogenic and inflammatory responses, including those triggered by transforming growth factor β (TGFβ). Our study supports the notion that simultaneous targeting of pro-inflammatory and fibrogenic mechanisms controlled by HDACs and PDE5 with a single molecule, such as CM414, can be a new disease-modifying strateg

    Serous cystic neoplasm of the pancreas: A multinational study of 2622 patients under the auspices of the International Association of Pancreatology and European Pancreatic Club (European Study Group on Cystic Tumors of the Pancreas)

    Get PDF
    OBJECTIVES: Serous cystic neoplasm (SCN) is a cystic neoplasm of the pancreas whose natural history is poorly known. The purpose of the study was to attempt to describe the natural history of SCN, including the specific mortality. DESIGN: Retrospective multinational study including SCN diagnosed between 1990 and 2014. RESULTS: 2622 patients were included. Seventy-four per cent were women, and median age at diagnosis was 58\u2005years (16-99). Patients presented with non-specific abdominal pain (27%), pancreaticobiliary symptoms (9%), diabetes mellitus (5%), other symptoms (4%) and/or were asymptomatic (61%). Fifty-two per cent of patients were operated on during the first year after diagnosis (median size: 40\u2005mm (2-200)), 9% had resection beyond 1\u2005year of follow-up (3\u2005years (1-20), size at diagnosis: 25\u2005mm (4-140)) and 39% had no surgery (3.6\u2005years (1-23), 25.5\u2005mm (1-200)). Surgical indications were (not exclusive) uncertain diagnosis (60%), symptoms (23%), size increase (12%), large size (6%) and adjacent organ compression (5%). In patients followed beyond 1\u2005year (n=1271), size increased in 37% (growth rate: 4\u2005mm/year), was stable in 57% and decreased in 6%. Three serous cystadenocarcinomas were recorded. Postoperative mortality was 0.6% (n=10), and SCN's related mortality was 0.1% (n=1). CONCLUSIONS: After a 3-year follow-up, clinical relevant symptoms occurred in a very small proportion of patients and size slowly increased in less than half. Surgical treatment should be proposed only for diagnosis remaining uncertain after complete workup, significant and related symptoms or exceptionally when exists concern with malignancy. This study supports an initial conservative management in the majority of patients with SCN

    Adjuvant drugs for peripheral nerve blocks: The role of nmda antagonists, neostigmine, epinephrine, and sodium bicarbonate

    Get PDF
    The potential for misuse, overdose, and chronic use has led researchers to look for other methods to decrease opioid consumption in patients with acute and chronic pain states. The use of peripheral nerve blocks for surgery has gained increasing popularity as it minimizes peripheral pain signals from the nociceptors of local tissue sustaining trauma and inflammation from surgery. The individualization of peripheral nerve blocks using adjuvant drugs has the potential to improve patient outcomes and reduce chronic pain. The major limitations of peripheral nerve blocks are their limited duration of action and dose-dependent adverse effects. Adjuvant drugs for peripheral nerve blocks show increasing potential as a solution for postoperative and chronic pain with their synergistic effects to increase the duration of action and decrease the required dosage of local anesthetic. N-methyl-d-aspartate (NMDA) receptor antagonists are a viable option for patients with opioid resistance and neuropathic pain due to their affinity to the neurotransmitter glutamate, which is released when patients experience a noxious stimulus. Neostigmine is a cholinesterase inhibitor that exerts its effect by competitively binding at the active site of acetylcholinesterase, which prevents the hydrolysis of acetylcholine and subsequently retaining acetylcholine at the nerve terminal. Epinephrine, also known as adrenaline, can potentially be used as an adjuvant to accelerate and prolong analgesic effects in digital nerve blocks. The theorized role of sodium bicarbonate in local anesthetic preparations is to increase the pH of the anesthetic. The resulting alkaline solution enables the anesthetic to more readily exist in its un-ionized form, which more efficiently crosses lipid membranes of peripheral nerves. However, more research is needed to show the efficacy of these adjuvants for nerve block prolongation as studies have been either mixed or have small sample sizes
    corecore